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Multi-resolution techniques, and especially the wavelet transform provide unique
benefits in image representation and processing not otherwise possible. While wavelet
applications in image compression and denoising have become extremely prevalent,
their use in image restoration and super-resolution has not been exploited to the same
degree. One issue is the extension 1-D wavelet transforms into 2-D via separable
transforms versus the non-separability of typical circular aperture imaging systems.
This mismatch leads to performance degradations.

Image restoration, the inverse problem to image formation is the first major focus
of this research. A new multi-resolution transform is presented to improve perfor-
mance. The transform is called a Radially Symmetric Discrete Wavelet-like Trans-
form (RS-DWT) and is designed based on the non-separable blurring of the typical
incoherent circular aperture imaging system. The results using this transform show
marked improvement compared to other restoration algorithms both in Mean Square
Error and visual appearance. Extensions to the general algorithm that further im-
prove results are discussed.

The ability to super-resolve imagery using wavelet-domain techniques is the second
major focus of this research. Super-resolution, the ability to reconstruct object
information lost in the imaging process, has been an active research area for many
years. Multiple experiments are presented which demonstrate the possibilities and
problems associated with super-resolution in the wavelet-domain. Finally, super-
resolution in the wavelet domain using Non-Linear Interpolative Vector Quantization

is studied and the results of the algorithm are presented and discussed.
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ABSTRACT

Multi-resolution techniques, and especially the wavelet transform provide unique
benefits in image representation and processing not otherwise possible. While wavelet
applications in image compression and denoising have become extremely prevalent,
their use in image restoration and super-resolution has not been exploited to the same
degree. One issue is the extension 1-D wavelet transforms into 2-D via separable
transforms versus the non-separability of typical circular aperture imaging systems.
This mismatch leads to performance degradations.

Image restoration, the inverse problem to image formation is the first major focus
of this research. A new multi-resolution transform is pr%ented to improve perfor-
mance. The transform is called a Radially Symmetric Discrete Wavelet-like Trans-
form (RS-DWT) and is designed based on the non-separable blurring of the typical
incoherent circular aperture imaging system. The results using this transform show
marked improvement compared to other restoration algorithms both in Mean Square -
Error and visual appearance. Extensions to the general algorithm that further im-
prove results are discussed.

The ability to super-resolve imagery using wavelet-domain techniques is the second
major focus of this research. Super-resolution, the ability to reconstruct object
information lost in the imaging process, has been an active research area for many
years. Multiple experiments are presented which demonstrate the possibilities and
problems associated with super-resolution in the wavelet-domain. Finally, super-
resolution in the wavelet domain using Non-Linear Interpolative Vector Quantization

is studied and the results of the algorithm are presented and discussed.
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CHAPTER 1
INTRODUCTION

1.1 Problem Definition

The heart of this work is a simple goal that has been around for a long time:
processing digital imagery to make it better. Obviously ‘better’ is a subjective term
open to various interpretations. It also implies that the images we receive have
.been degraded in some manner. The assumption throughout this work is that the
degradations stem from a circular aperture imaging system further corrupted by noise.

Even before computer-based techniques were feasible, people have sought methods
to process images to mitigate the effects of the imaging system (e.g. blur, noise) or
the environment (e.g. atmospheric distortion, dim objects). Over the years, this has
grown into a large body of work with the majority of the current work focused on
digital imagery. The approach I have taken is to look at image processing from a
multi-resolution perspective. Wavelets, the mathematical basis of multi-resolution
decomposition, have a long history in signal processing, and more recently have been
extended to 2-D applications such as image processing. Using the unique attributes of
multi-resolution decompositions, improved estimates of the imaged object are shown

to be possible.

1.2 Research Goals

The primary goals of this research are

e Analyze image restoration from a multi-resolution perspective

e Develop new algorithms for image restoration to improve performance
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e Investigate the feasibility of super-resolution in the wavelet domain.

e Analyze Vector Quantization as a means to achieve super-resolution.

1.3 Outline

Chapter 2 provides the necessary background on image formation. This starts
with the most general case, and discusses the approximations that are necessary to
simplify the problem. Next it discusses the inverse problem, recovering knowledge of
an object given its degraded image. Discussion on the resolution of an imaging system
and metrics used to quantify restoration performance are next. It concludes with a
discussion of super-resolution and how the definition varies in slight but important
ways throughout the literature.

Chapter 3 contains an introduction to the concept of multiresolution image de-
composition. Starting with the Laplacian Pyramid, it discusses the motivations and
techniques behind multiresolution image decompositions as well as their implemen-
tation. The wavelet transform is then derived from this basic concept of multi-
resolution decomposition. The properties of the transform are discussed in both the
spatial and frequency domain. Last, several variations of the general transform that
are required in later chapters are presented.

Chapter 4 briefly summarizes the large body of previous work in the field of image
processing using wavelet transforms. It starts with a discussion on image denoising
applications. Next, image restoration algorithms are presented and connected to
image denoising. Last, a few image interpolation techniques are presented, which I'll
later connect within the construct of super-resolution.

Chapter 5 introduces a new method of multiresolution decomposition that aligns
more closely to the typical imaging systems in use. The transform will be described
and applied to the image restoration problem. Results will be presented and com-

pared with other techniques.
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Chapter 6 will discuss super-resolution techniques from a multiresolution perspec-
tive. A set of experiments to demonstrate the feasibility are presented, along with
a proposed algorithm to super-resolve based on Vector Quantization.

Finally, Chapter 7 offers a summary of results and a discussion of the areas that

seem most promising for future study.
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CHAPTER 2

FUNDAMENTALS OF IMAGE FORMATION AND
RESTORATION

2.1 Overview

Any rationale attempt to restore imagery must be based on a reasonable model of
how the image was formed from the object. Constructing such a model, along with
the necessary simplifications to make it tractable, is the basis of the first section of
this chapter. From this basis, we can begin to strategize on methodologies for the
inverse problem — recovering knowledge of the object from the image. A discussion of
some of the classical methods of image restoration is the focus of the second section.
In addition, the concept of super-resolution, an extension of image restoration, is
discussed in the last section.

The areas of image formation and restoration are a maturing field and have a
considerable amount of literature dedicated to them. In this chapter, I seek to
uncover parts of these topics which are critical to subsequent chapters rather than
cover it in detail. For additional background and more extensive treatments in image
formation, two classic texts are [1, 2] which develop the results from the basic theory.
Image restoration is a broad discipline, but several excellent starting points for further

study are [3, 4, 5, 6] as well as survey article [7] and references therein.

2.2 Image Formation

Image formation is the process of detecting radiant energy emanating from an

object. This is graphically depicted in figure 2.1. Denoting the object by f (2/,y/)
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and the system by an operator £, we can write the detected image

g(z,y) = L{f («,¥)} (2.1)

Object Imaging Image

3 B System 1 )
¥ ¥
v v

FIGURE 2.1. Model of a general imaging system

In general, the resultant image from the propagation of a monochromatic optical

wave field from the object plane to the image plane can be written as

oz,y) = / [1uay. 1 @) sy (2.2)

where h is the response at the point (z,y) in the image plane to an impulse of
amplitude f (z',y') at point (2/,7) in the object plane, accounting for the optical
wave propagation and system effects. A result of diffraction theory and the linear

nature of diffraction shows that, in the Fraunhofer region, the image is given by

gmw=//h@%awfwymmw (2.3)

where h (z,y,2',y') is the amplitude response at the image point (x,y) to an impulse
at (2/,9) in the object plane. Here we make the assumption that wave propagation
and the imaging system are linear which removes the functional dependence on the
amplitude, f (z',y), from h. Equation 2.3 defines a broad class of problems encoun-

tered in many physical situations, and is called a Fredholm integral equation of the
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first kind. An attempt to estimate f (2/,4y') from the data g (z,y) is called an inverse
problem.

At this point, we need to make an additional assumption about the system in order
to simplify the problem. First, we assume the optical system has no aberrations, it
is “in focus,” and that the object and image planes are stationary. Together, these
imply that the system is shift invariant (SI) — that the amplitude in the image plane
from a impulse in the object plane is dependent only on the relative separation, i.e.

h(z,y,2',y) =h(z—2',y—y'). This leads to the model

// z—2,y—y) f(d,y)dddy (2.4a)
9(@y) = (h®[)(=zy) (2.4b)

where (h® f) (z,y) denotes the convolution of h and f evaluated at (x,y). Thus,
for a linear and shift-invariant (LSI) system, the resultant image is a convolution of
the object with h.

As this dissertation will be focused only on incoherent imaging, equation 2.4b
requires further discussion. While g and f above are amplitudes, in the incoherent
case we can only measure the time average intensity. Thus we need the relationship

between the object and image intensities (g; and f;, respectively), which is given by

The image intensity is the convolution of the object intensity with the square of the
amplitude impulse response. The |h|2 term, the intensity impulse response, is called
the point-spread function (PSF).

The PSF can be derived from the aperture function p (x,y) which is the transmis-
sion of the system aperture. For an aberration free system, p (z,y) is one inside the
aperture and zero outside. From diffraction theory, the PSF is given by the mag-

nitude squared of the Fourier transform of the aperture function (within a constant
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multiplying scale factor) evaluated at frequencies (€,7) = (&, %)

B (z,9)” o |F{p(zy)} (2.6a)
« ‘P(%,%)‘ (2.6b)

As for notation, uppercase variables represent the Fourier domain representation of
the function, F (p (z,y)) = P (£,n). For simplicity of notation, in subsequent sections
I will drop the squared term and refer to the PSF as simply h. Additionally, I will
drop the primed notation on the object plane coordinates unless needed for clarity.
If we look in the frequency domain, the Fourier transform of the PSFE is called
the optical transfer function (OTF), H (£,7n), and its magnitude is the modulation
transfer function (MTF). The OTF is the frequency response of the system, and is

by definition normalized to unity at the DC term.

H(En) = F{lh(zyl’} (2.7a)
o p(z,y) *p* (z,y) (2.7b)

where % denotes autocorrelation. From this we see that the OTF is directly propor-
tional to the autocorrelation of the aperture function.

Since the OTF of any real system is the autocorrelation of a (necessarily) finite
aperture function, the OTF must have finite extent. This is critical result: any
LSI system will eliminate all frequencies above a threshold, f,, which is determined
uniquely by the aperture function. This frequency above which no information can
be passed by the system is called the diffraction cut-off. For a circular aperture of

diameter d and focal length f, the MTF (in polar form) is given by [1, eqn 6-32]

-1{ e\ __ P S B
[COS (Po ) 2pg 1 < 2p0 ) P S 2P0 (28)
otherwise

H(p) =

O "

where p = /€% 4+ 12 and p, = 2p, = % is the cut-off frequency,. The corresponding
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PSFE (within a constant multiplying scale factor) is given by
2
h(r) o jinc® (r) o <Z1(_’/r72) (2.9)
r

where J; is the first order Bessel function of the first kind and r = f—f %2 4+ y2. For
the circular aperture case, 3-D plots of the MTF and PSF are shown in figure 2.2,
while a 2-D slice of the MTF and PSF through the maximum is shown in figure 2.3.

I will refer to this PSF and OTF as the incoherent circular aperture case.

(a) (b)

FIGURE 2.2. 3-D plot of (a) jinc?, the PSF for a circular aperture imaging system
and (b) the related MTF.

One item of primary interest is the resolution of a given image. This term is
subjective in its nature!, but criteria can be established to permit specification and
comparison of system resolutions. The results are derived for a circular aperture
imaging system sampled at or above the Nyquist rate. Four separate cases for
images of two point sources are shown in figure 2.4. Due to the circular symmetry of

the PSF, an arbitrary 1-D plot through the center is sufficient. The first plot (figure

! Lord Rayleigh, who developed the first criteria discussed below, stated “This rule is convenient
on account of its simplicity and it is sufficiently accurate in view of the necessary uncertainty as to
what exactly is meant by resolution” [8]
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(a) (b) (c)

FIGURE 2.3. 1-D plot of (a) jinc function, (b) jinc? function, the PSF for a circular
aperture imaging system, and (c) the related MTF. Note that the dotted line in (c)
is the triangle function (straight line) for comparison.

2.4a) shows when the two point sources are clearly resolved. Next is what is termed
the Rayleigh criteria - when the first zero in the PSF corresponds to the maximum in
the other. The next is Sparrow’s criteria when the resultant image has flat midpoint
between the objects, or more precisely when the second derivative is zero. The last is
when the two points are clearly not resolved. For a non-circularly symmetric system,
similar resolution criteria will depend on orientation.

The Rayleigh criteria is most broadly known as the resolution limit of the system,

and is when the point sources are separated by a distance

A
Boep = 1.2277' | (2.10)

where r is the range to the object. In actuality, this criteria is pessimistic as to what
can actually be resolved[8], especially including restoration techniques discussed in
the next section. The Sparrow’s criteria may be closer to reality, but leads to a more

complicated derivation of the resolution distance.
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FIGURE 2.4. 1-D plots of the resultant images from two point sources. Point sources
are vertical lines, dotted lines are the PSF, and the solid line is the image. (a) is
clearly resolved, (b) is the Rayleigh criteria, (c) is the Sparrow criteria, and (d) is
non-resolved.

2.3 Image Restoration

Image restoration is the attempt to reconstruct the original object, f (z,y) from
the data g (z,y). The estimate of the object will be denoted with an overhat, f .
The above discussion on image formation is based on mapping a continuous function
(object) to another continuous function (image), Le : f(2,y) — g(z,y). While
reasonable in theory, actual implementations use digital data which is by its essence
discrete. A more practical point of view is the continuous-to-discrete mapping,
L. : f(z,y) — g[m,n], where the object plane is allowed to remain continuous,
while the image is discrete - composed of individual pixel values indexed by integers

m and n:

gm,n) = / / hown (2,) 1 (2, 9) dxdy (2.11)
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where hp,(z,y) is the analog to the continuous PSF - ie. the sensitivity of the
[m,n]™ pixel to light from (z,y) in the object plane. This mapping represents the
reality of the typical imaging system, where the object is continuous, but the data is
discrete. However, there will be infinitely many continuous objects that produce a
single discrete image, due to the change in dimensionality of the problem.

This leads to the concept of a null space. The null space is a function of the PSF
and is defined by

S ={f@:(fer) @y -9 () = of (2.12)

which essentially states that any estimate that matches the data is a member of
the null space. A null object is defined as the difference between a member of the
null space and the true object. Obviously, any image with content only above the
diffraction cut-off will be a null object. Other null objects are possible due to the
continuous nature of the object and discrete nature of the image. The best we can
accomplish is to obtain an estimate within the null space meeting some regularization
constraint.

In digital implementation of image restoration, the object estimate is also limited
to discrete approximations, although this may be displayed in a continuous form with
the use of suitable basis function expansion. Thus, in order to readily compute
performance metrics between the original and restored images, a discrete-to-discrete
mapping is useful, Ly : flm,n] — g [m,n]

glm,n] = ZZh [m,n,m’,n'] fm' n] (2.13)

m! n!
where h again is the analog to a PSF, the sensitivity of the [m,n]™ pixel to light
from point [m',n/] in the object plane. This perspective permits use of digital image
data and allows comparison of the estimation of the object, f [m,n], to the original
discrete representation of the object. However, this is only an approximation of

what is truly happening: a continuous object being mapped into a discrete image.
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It will be assumed throughout the dissertation that the discrete image is sampled

above the Nyquist rate to prevent any aliasing, i.e. samples are closer than 3 f:m for

a bandlimited signal with maximum frequency fmaq-

As discussed in the above section, the frequency response of any system will be
non-zero only out to a cut-off frequency f.. Image restoration is the attempt to
restore the frequency content of the original image. For the purposes of this discus-
sion, I will make the distinction of frequency content below the diffraction cut-off,
a concern of classical image restoration (discussed below in this section), and that
above the diffraction cut-off, which is restored through super-resolution techniques to
be discussed in the next section. In practice, however, they are often combined into
a single algorithm.

Let us take as a model the typical linear shift-invariant system:

9(z,y)=(h®f)(z,y) +n(z,y) (2.14)

where n is the noise. In the Fourier domain we have

G(&n)=H(&n) F(&n)+N(En) (2.15)

The straightforward approach of inverting H, (dropping the indices for clarity)
F=H'G=F+H'N (2.16)

is often unstable due to any zeros (or low values) in the system frequency response H
which will amplify the noise. This is usually a useless result. However, we can see
from this representation that the inverse filtered estimate is simply the original object
with noise H~!N. Thus, the deconvolution is now a denoising problem. However,
even for additive white Gaussian noise (AWGN), H !N will not be white. The
inverse filter will color the noise, often significantly.

An initial approach to deal with this is the use of a object consistency metric where
minimization of a distance metric between the estimate and true object is desired.

f= argmin {d (f, f)} (2.17)

f
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Of course, the true object is rarely known which requires the use of a data consistency

metric

= argmin {4 (v91,5)} = argmin{Qun (F)} (219
5 f
One of the most well-known restoration methods, the Wiener filter, is an example

of this, where the desire is to minimize the mean-square error,

f = argmin {Z f @y) - f (m,y)f} (219)

consistent with AWGN n, and the fact that the estimate will be a linear filtered

version of the data, f =w ® ¢g. The resultant filter in the frequency domain is

H*(&,m)
W (¢, 2.20
©0 " e+ 83 o

where S,(£,n) = <|N(§,77)| > and  Sp(§,n) = <IF(£:77)|2>

Thus the filter can be looked at as an inverse filter followed by reduction of the

frequency magnitude based on the SNR, (%;g?zg)

F=WG (2.21a)
:( 1>H*G (2.21b)

1+«

where o = 5n(€,m) . L
" (Sf@,n) IH(E,n)I2>

From Equation 2.21b, any frequency component will be multiplied by the inverse filter

and then ‘shrunk’ in relation to a weighted SNR. For large SNR, (1+_a) approaches
unity maintaining the frequency content, while for small SNR, (1 +a) approaches zero,
shrinking its contribution to the restored image.

One issue in using the Wiener filter is the calculation of the power spectral densities
(PSDs) S¢(€,m) and S¢(€,m). Techniques exist for approximating S,(€,7) from the
data, especially in the white noise case. However, S¢(,n) is rarely well-known for
any problem of interest. One solution is to estimate Sy (£,7) iteratively from the

data, see [9] for an example.
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Any LSI restoration filter can be written as a multiplication in the Fourier domain.

If W is an arbitrary LSI filter,

F = WG=WHF+WN (2.22a)
= F+(WH-I)F+WN (2.22b)
= F+Ef+E, (2.22¢)

Thus, there are two error terms in the restoration, Ey which is proportional to the
object, and E, which is proportional to the noise. Any regularization of an LSI filter
is an attempt to balance the two terms. To restore the frequency content at a point
where H (€,7) is close to zero, we must increase W (&,7m) to compensate. This will
also amplify the noise (E,), which can cause more harm than good. If we reduce
W to reduce noise amplification, the product W H will decrease and (WH — 1) will
tend toward —1 at those frequencies, yielding F=F—-F+E,=EF, Thiswil
blur the image and cause ringing due to removal of frequency content. This is one
motivation for non-LSI (either spatially variant or non-linear) methods — to provide
a more robust trade-off between noise suppression, blurring and ringing.

The choice of the Euclidean metric (equation 2.19) is arbitrary and others have
been proposed. As an example, the Kullback-Leibler distance (actually a generalized
distance metric) may be more applicable in Poisson noise cases.

A second broad class of algorithms use a functional minimization of the form
f = ar:gmin {Qdata (f; g) + 1 Qreq (f)} (2.23)
f

where in addition to the data consistency term, Qgq, a regularization term, Qe
is added to impose additional constraints. Examples of Q. are minimum norm
estimates, maximum entropy, and maximum likelihood. The p hyper-parameter, the
weighting of the terms in importance, must also be defined. The solution to equation

2.23 is rarely simple to determine and often requires iterative techniques.
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One other class of image restoration techniques is projection onto convex sets
(POCS). Often, known constraints on the image form a convex set in solution space.
If there are two or more such constraints, an object estimate can be determined by

repeated projection onto the known sets,
fn—f-l - 73317)32 ce pskfn (224)

where Ps, fn is the projection of fnonto the set s;. For convex sets, repeated projec-
tions will converge to an estimate that will depend on the intersection of the k sets.
This will be either a unique solution (single point of intersection), the least-squares
solution (no intersection), or one of many solutions (intersection is a set itself). This
is a powerful and often straightforward technique. However, it requires a prior:
knowledge of what sets are applicable and can be extremely slow in convergence.

After an estimate is calculated, there is a need to quantify the performance of
the image restoration process. It is important to remember that whenever ‘perfor-
mance’ is discussed, it is not a simple matter due to the variety of applications for
the processed imagery. Thus, in any comparison one must account for the end-use of
the imagery, as further discussed in [6]. For the purposes of this work, a subjective
improvement in visual appearance is desired. While valid as a goal, it lacks an objec-
tive metric. In order to quantify ‘goodness’ of a restoration, I will use some metrics
that have been previously developed and used. The first is mean square error (MSE)
of an image N pixels square

MSE = %Z’f(m,y)—f(m,y)z (2.25a)

o)
_ <1f(— f\2> (2.25b)

The MSE can be compared to the mean value of the image to account for differences
in magnitude of images. When calculated in dB, this is the émage SNR. This can

be used to compare any two images, whether the original and restored images, or the
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original and degraded images:

2
SNRdB = 10[0910 M‘ (226)

(=)

This can also be normalized to the peak value of f rather than the expectation, which

is called the peak SNR (PSNR)

@ﬁiﬂ%yw
PSNRyg = 10logig | —~ (2.27)

=11

To measure the image degradation from the combined effects of blur and noise, the

blurred SNR (BSNR) can be used

BSN Ry = 10loga (<|(h ®f)—((hef )>|2>) (2.28)

o
The improvement SNR (ISNR) is a metric that measures the improvement of the

restored image, f , compared to both the original, f, and degraded image, g.

{f —g*)

Each of the above metrics is of some use in comparing images, but all suffer the

ISNRdB = 10[0910 <229)

same problem: there is no agreed upon global metric that can capture the performance
of image restoration. I would add that there probably never will be one due to the
variety of applications and desires. In the results presented later, I will include the

above metrics, but also the images themselves for a subjective comparison.

2.4 Super-resolution

As discussed above, diffraction imposes a cut-off beyond which the frequency
content of the object is lost. Super-resolution is the attempt to recreate some of this

‘lost’ frequency content. A working definition of super-resolution for my purposes is:
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”The meaningful restoration of the object frequency spectrum for frequen-

cies beyond the optical system cut-off.”

Thus there are two important criteria for declaring super-resolved imagery: 1)
there is restoration above the diffraction cut-off and 2) this restoration is meaningful.

Lacking an approved standard definition, super-resolution has been defined in
similar, but different terms. Thus it is important to gain an understanding of the
differences so we compare only apples to apples. For example, in [10], super-resolution
is achieved using a wavelet-based interpolation algorithm. Using multiple sub-pixel
shifted images of the same scene a zoom factor of 4 is achieved. This is far above
the improvement reported elsewhere[11, 12]. However, there is a critical difference
of definition. While the definition I use above is based on recovering information
beyond the optical system cut-off, the implied definition for super-resolution in [10]
is restoration of frequency spectrum above the detector array cut-off. In this case,
the optics is not the limiting factor, but the detector is undersampled by a large
amount. Thus, the image information contained in the higher frequencies (up to the
optical system cut-off) is present in the imagery, albeit in aliased form. Thus the
problem is to un-alias the frequency content using multiple realizations of the image
with sub-pixel shifts — trading off temporal bandwidth for spatial bandwidth. This
is a vastly different problem than that of actually restoring frequencies beyond the
system cut-off, about which all direct information is eliminated. For the purposes
of this research and the remainder of this dissertation, super-resolution will refer to
the definition above, meaning the ability to restore frequency content lost due to the
optical system cut-off and not due to undersampling.

The fundamental reason super-resolution is possible is based on the analytic con-
tinuation theorem. The mathematical theorems state that 1) any spatially bounded
function will have an analytic Fourier transform and 2) for any analytic function

known exactly in a finite region, the entire function can be uniquely determined. Any
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spatially bounded object will have an analytic Fourier transform. Perfect knowledge
of this in any finite region, will allow us to determine it everywhere - thus know its
spectrum beyond the diffraction cut-off. While this lays out a mathematical explana-
tion for why super-resolution may be possible (at least for spatially compact objects),
it lays out untenable requirements. To know the Fourier transform exactly within a
finite region requires no noise in the measurements. However, noise is always present,
even if simply the quantization noise of digital systems. The super-resolution prob-
lem is very ill-conditioned, and becomes impossible as noise increases. However,
there has been success in super-resolving imagery.

As discussed above, LSI systems can be completely described by a convolution in
the spatial domain, or equivalently a multiplication in the frequency domain. Thus,
an LSI restoration algorithm cannot super-resolve since a frequency content of zero
can never be made non-zero through multiplication with the (finite) filter frequency
response. 'Two aspects that are involved in successful super-resolution algorithms

are:

1. The use of non-linear and/or spatially varying techniques.

2. The use of a priori knowledge such as positivity, limited spatial extent, distrib-

ution model etc. to regularize the problem

Multiple techniques to achieve super-resolution have been developed. The first
discussion of super-resolution was in 1955[13]. A few techniques are based on a
spatially varying algorithm, such as the Gerchberg-Papoulis algorithm[14, 15]. Most,
however, are nonlinear and have been derived from Bayesian or maximum entropy
estimates[16, 17, 18, 19, 20, 21]. A thorough discussion with historical background is
available in either [22, 23]. One topic of interest here is how to quantify or measure
super-resolution. One obvious method is to visually compare the ‘super-resolved’

image to the original. This is simple, but again lacks a quantitative metric. In
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order to quantify the effect, I will use a complez correlation coefficient image (CCCI)
as developed by Miller[24]. The idea is to measure the correlation of the (complex)

Fourier domain coefficients of the original and super-resolved images by

Yo Fu,v) F* (u,v)

(u,v)éNk
. 2
F (u, v)’

(& m) = (2.30)
< > IF(U,U)V)( >
where Ny = {(u,v):é—k<u<&+kn—k<v<n+k}

(u,’U)ENk (u,’U)ENk

This is based on the correlation of random processes[25, eqn 10-26]. Equation 2.30
calculates the correlation of the frequency content of the images within a 2k 4 1 size
square box around the pixel of interest. In this work, k = 3 was used. The correlation
will be in the range [0,1]. A zero implying no similarity, one implying identical
images. When viewed as an image, these values will show where there is strong
correlation to the original data. For a simulated image, where the diffraction cut-off
was below the highest image frequency, any strong correlation above the diffraction
cut-off would imply some measure of super-resolution. This is then a measure not
only if high-frequency content has been added to the degraded image, but whether
the frequency content matches the original and is therefore meaningful. If a single
data point is desired, this correlation can be averaged for all frequencies above the

diffraction cut-off.
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CHAPTER 3
MULTIRESOLUTION METHODS IN IMAGE PROCESSING

3.1 Overview

Multiresolution in its simplest form is the decomposition of an image into multiple
images of different ’resolutions.” The concept of resolution is a measure of the relative
size of image content that is contained in the image. Thus a low resolution can be
viewed as a blurred version of the original, where only coarse details are present.
High resolution contains the fine details of the image. Figure 3.1 shows the Lenna
image, along with a high-resolution subband and a low-resolution subband. This
concept of resolution and fine or coarse detail can be related to the Fourier domain,
where high/low resolution corresponds to high/low frequency content — the exact
relationship will be explained in more detail below. Through the initial work of
Hubel and Wiesel[26] and later Daugmann(27], the human visual system appears to

use a multiresolution, wavelet-type method for image processing[28].

©)

FIGURE 3.1. Examples of resolution in imagery: (a) is original Lenna image, (b) a
high-resolution subband, and (c) a low-resolution subband.

This chapter will lay the theoretical and intuitive groundwork for the work pre-

sented in later chapters. Multiresolution techniques in image processing began in
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earnest in 1983 with the Laplacian Pyramid of Burt and Adelson[29]. The first
section is an overview of this work, demonstrating the overarching concept of mul-
tiresolution decomposition. In the late 1980’s, this concept was combined with the
wavelet transform[30] as it developed and matured. The wavelet transform has a long
history before its current incarnation, with roots in several independent areas from
geology to signal processing. The remainder of the chapter will be devoted to an ex-
planation of the wavelet decomposition from both the spatial and frequency domain
perspective. Compared to Laplacian pyramid based approaches, wavelets provide
more flexibility in their construction, leading to many performance improvements.
To help clarify terminology, the use of ‘signal’ and ‘image’ will be used inter-
changeably, with an image simply being a 2-D signal. Likewise, in developing some
of the concepts initially in 1-D, I will use the time domain interchangeably with the
spatial domain. Last, the terms high-resolution, high-scale and detail representation
are synonymous; similarly, low-resolution, small-scale and approximate representation

are synonymous.

3.2 Laplacian Pyramid

The first significant application of multiresolution techniques in image processing
was the Laplacian pyramid[29]. The algorithm used in this image transform is
outlined in figure 3.2. A Gaussian pyramid is formed by low-pass filtering the original
image and downsampling by a factor of 2 — they term this a REDUCE operation which
is 'R’ in the figure. This process can be repeated as desired to form successive levels,
G, each a factor of 2 smaller both dimensions, as shown in figure 3.3. The term
pyramid comes from the shape of the images when placed next to each other, and
the Gaussian term comes from the limiting shape of the low-pass filter used. For
2-D images, it is assumed that the filters are applied in a separable manner, i.e. the

same 1-D filter is applied to the rows, and then the columns to achieve the REDUCE
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FIGURE 3.2. Algorithm for Laplacian pyramid transform

operation on a 2-D image.

To return the image to the original size, we can interpolate (termed EXPAND or
'E’ in figure 3.2) the low-pass image. Due to the low-pass operator and downsampling,
the expanded image will not be the same as the original. However, we can form
an ’error’ image by subtracting this from the original. This image, L,, contains
information as to how the low-pass version differs from the original. The error
images are called a Laplacian Pyramid as the output is visually similar to that of a
Laplacian operator. The complete transform consists of as many Laplacian images as
desired (limited by image size) and a single resulting Gaussian image. For simplicity,
T’ll assume nxn images, where n is a power of 2. Thus, the maximum number
of levels of decomposition is logsn, where the resulting Gaussian image is a single
pixel. The number of levels of decomposition actually computed is dependent on the
application, but typically the decomposition is stopped when the Gaussian image is
around 16 or 32 pixels square.

Two levels of the Laplacian pyramid (L; and Ls) and the remaining Gaussian im-




36

(b)

FIGURE 3.3. Gaussian Pyramid of Lenna. (a) shows the original image and 2 levels
of decomposition. (b) shows the same images as in (a), but upsampled to better
visualize the effect of scale

age (G) are shown in figure 3.4. The inverse transform is straightforward: given the
Laplacian pyramid images and the base Gaussian image, we interpolate the Gaussian
image, add it to the Laplacian image of the same level, and use the result as the
Gaussian image at the next level. See figure 3.2 for an algorithmic outline. This
method will provide a perfect reconstruction of the original image from the transform
data. As is obvious from figure 3.3, successive Gaussian pyramid images are more
blurred versions of each other - this becomes more obvious when the Gaussian images
are interpolated to the original size. The first Laplacian pyramid image is a high-
pass version of the original. Subsequent Laplacian images are similar to band-pass
filtered images, while the last Gaussian image is a low-pass image. The smallest
image details are visible in the L; image, notably the fine texture in the hair and the
hat (see figure 3.4(b)), whereas L, shows prominence along the coarser texture of the

hair and face. Note that a step-edge such as the hat outline will appear at multiple
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FIGURE 3.4. Laplacian Pyramid of Lenna showing the first two Laplacian images (L,
and Ly) and the resulting Gaussian image (G2). (a) shows the downsampled images.
(b) shows the same images as in (a), but upsampled to better visualize the effect of
scale and displayed as absolute value to enhance large magnitude areas.

levels.

One result of the algorithm is that there is a redundancy in the transform. The
output will be a series of images, the first with dimensions of the original, the second
half the size in each dimension, etc. Thus the number of output pixels will be greater
than the number of input pixels, which means we have a redundancy in the data. The
redundancy factor will depend on the number of levels of transform, but is bounded
above by % (= 1+ 31+ & +..). While this redundancy can be beneficial in some
applications, in others such as compression it is a drawback. Another aspect of the
transform to note is aliasing occurs in the downsampling operation. As with any
low-pass FIR filter, when the result is downsampled aliasing will occur. While this
is not an issue for the Laplacian pyramid in terms of perfect reconstruction due to

the construction of the algorithm, it can cause trouble in other applications where
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the transformed images are modified.

As demonstrated in the original paper, image compression performance was sig-
nificantly improved, even though they start with a redundant representation of the
data. The pyramidal form also allows for progressive transmission of the image - the
Gaussian image is used as an initial estimate, followed by improvements as the Lapla-
cian images are received. It was also proposed for computer vision applications since
image features of various sizes (i.e. resolutions) are isolated in each of the Laplacian

pyramid images.

3.3 Wavelet transforms
3.3.1 Background

This section is meant to introduce some mathematical concepts that will be used
in subsequent sections. For a more thorough discussion see [31] and the extensive
bibliography therein. The first definition is a function space which is a linear (infinite
dimensional) vector space where the vectors are allowed to be continuous functions.
An example is L2(R) which is the space of all square-integrable functions, i.e. L*(R) =
{f(:l:) e |f(z)]? dz < oo} A set of vectors {¢,} span a space S if any element
of S can be written as a linear combination of the ¢, i.e. for any f (z) € S,

[(z) =) alk] () (3.1)
k
The set {¢,} is then called an expansion set for S. Note that the limits on the K
summation may be infinite. If the expansion coefficients, a [k], are unique, it is a basis
set. If (¢, ;) = 0 for k # I then it is an orthogonal basis. If (¢, ¢;) =6 (k —1), it
is a ortho-normal basis set. For an orthogonal basis, the expansion coefficients can
be found by an inner product a [k] = (f(z), ¢ ()).
If, however, the ¢,’s are not independent, they can still form a frame. A frame

is an overcomplete set of vectors (functions) that span the given set. To be a frame,
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¢, must satisfy
AfP <Y el < BIfP (3:2)
k

forsome 0 < A< B<ocoandall feS. If A= B, then it is called a tight frame.
This is a generalized Parseval’s theorem, when A = B = 1 it reduces to Parseval’s
equality. The overcompleteness of a frame provides a redundancy in the expansion.
In certain applications this can provide a more robust representation, while in others
such as compression, it is not desired.

While orthogonal bases are simpler, at times a biorthogonal system will be desir-
able. In a biorthogonal basis, there are two sets, {¢,} and {c}ﬁk} The elements of

each set are not orthogonal to each other, but to all members of the other set,

<¢k> <;51> = 5(’“ —1) (33)

In a biorthogonal set, the vectors used to calculate the coefficients are different from

those used in the expansion, leading to two possible decompositions:

fl@) = > alkldy(@) = (f(2), () dp(x) (3.4a)

= Y ik ee) =3 (F(2), @) 6:() (3.4b)

The use of different sets for signal analysis and synthesis provides more freedom in

their selection, a fact that will be important later.

3.3.2 Approximation - Scaling coefficients

Following a similar idea as the Laplacian pyramid transform, wavelets seek an al-
ternative representation of the image in a multiresolution form. First, let us examine
the approximation of a signal at a given resolution level. For simplicity, the initial
focus will be real, continuous functions, with the discrete case discussed later. Any
function, f(z) € L?(R) can be expanded in terms of a (possibly countably infinite)

set of basis functions ¢, within certain restrictions not important to this discussion.
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Let us determine the function space spanned by translates of a single basis func-
tion, ¢, assuming a limited spatial extent. As a particular example, let

dolz) = { L, 0<z<1 35)

0, otherwise

When combined with integer translates (¢o(t — k) for all k € Z), this forms a basis
set for a function space V5. We can denote the span of the set as Vg,
Vo= {f(a:) fl@)= Y alk]go(z — k)} for some set of a [k] (3.6)
k=—o00
For the example in equation 3.5, V5 is the set of all functions that are piecewise
constant between integers — which is an approximation of the continuous f(z). That
is,
fle) = Ao {f(2)} (3.7)
where Ap {f(z)} is the approximation of f(z) within the space V5. If we want to
increase the size of the spanned space, and thus improve the approximation, we can

scale ¢y to a smaller support. Using a factor of 2 reduction in size of the basis

function, the example from equation 3.5 is

¢1(x)={ L0sz<y (3.8)

0, otherwise

The space spanned by (half-integer) translates of ¢, will include all of functions
that are piecewise constant between half-integers. Obviously this set, V; includes Vj
as a subset. We can continue to reduce the size of the ¢ and increasing the space
spanned. We can formalize this by defining ¢,(z) = 29/2¢(2x), where the j is an
integer that represents the spatial extent of the basis function — this is also called the

scale. Including all necessary translations to cover the real line, indexed by k, define

bipl@) = ¢;(@—k) (3.9)
= 2/%¢, (2z — k)
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The 27/ multiplier in equation 3.9 is a normalization factor that will maintain a
Parseval’s equality, while the 27z provides the scaling (contraction or expansion of
spatial extent) of the original ¢,. Note that shape of the ¢;,’s is invariant - only
spatial extent and a normalizing constant multiplier change. Thus ¢ is called the
basic or 'mother’ scaling function.

If we let 7 — oo, the space spanned by {gf)j,k} will approach L?(R) and the ap-
proximation approaches the original signal. For the above example this was initially
shown in 1910 by Haar. In practice, since digital signal processing uses a sampled
representation (possibly of a continuous function), there is a maximum scale of in-
terest, above which the extra detail is not reflected in the samples. Thus, there is a
maximum scale J (J < 00) of interest.

Notice that V; C V44 for all j, since as the original basis is scaled to higher j
(smaller extent, more translations) a more detailed approximation is available, with-
out sacrificing the coarser detail. Thus the spaces V; form nested function spaces,
with each containing all lower indexed function spaces. That is, the space spanned
by any {¢]k} will be a subset of the space spanned by {qu +1, k}, which is the higher
scale version of the mother scaling function.

By the nested subset nature, since ¢; € V;, we also know that ¢, € Vj;;. However,
since ¢, € Vj41 we must be able to express it as a weighted sum of basis functions for

Vi1 which are ¢, ,:

¢;(x) = Z ho [n] ;1.1 (z — n) (3.10a)
= > holn]V24,(2x — n) (3.10b)

where the hg coefficients are the basis weights. The hgy describe the linkage between
the two scales — what weights to apply to a combination of detailed scaling functions
to yield the coarser scaling function. A relationship of this type is required for

approximations to form nested subspaces. This is a more stringent requirement than
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used in the Laplacian Pyramid. These discrete ho coefficients will turn out to be a
sufficient representation of the continuous scaling function ¢4(z). As a normalization
convention, it is typically assumed that ) |ho|* = 1.
Thus, in order to provide a transform representation of a signal, we need to de-
termine, for a given j, the a; [k] coefficients in the expansion
o
f@) = A {f(@)} = X a;[kl¢;(z—k) (3.11)

k=—o00

The a; are directly calculable by a projection:

a; k] = (f(= m)) (3.12)
= 23/2/ f(@)po(27x — k)dz

However, it is straightforward to develop a simpler method to determine a; [k]
based on the hg [n] coefficients that define the scaling function. To derive the rela-

tionship, set t = 27t — k in equation 3.10b,
(20 — Zho | V26;(27z — 2k — n) (3.13)

changing variables m = 2k 4+ n and substituting this into the inner product (equation

3.12) and re-arranging terms yields
aj[k] = ) holm— 2k [ / f(@)20+D/ 2495 g — m)dt (3.14a)
= Z ho [m — 2k] a1 [m)] (3.14b)

= Zho (2k — m)] a;41 [m] (3.14c)

using the definition of a; from equation 3.12.
That is, the a;;; coefficients along with hy can be used in a convolution-type
calculation to produce the a; coefficients (i.e. the higher scale data is used to compute

the lower scale data). This convolution varies from the standard convolution due to
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the hg index which has a negative sign and a multiplier of 2 on k. This implies that the
exact relationship is a convolution with hg(—n) and then the result is downsampled
by a factor of 2 — as can be seen by letting k' = 2k and taking only integer indices on
a;[K].

At each stage, N of the a; coefficients (approximation of f(x) at scale j) are
used to calculate & of the a;_; coefficients (approximation of f(z) at the coarser
scale 7 — 1). This changes the calculation of coefficients from a continuous integral
(equation 3.12) to a convolution. The requirement is however, that we know the a;
at the highest detail level, as they are used to generate the coefficients at each coarser
level. This will be addressed in section 3.3.4 below.

While this section was motivated by the use of the Haar scaling function, as
defined by equation 3.5, the development is valid more generally. This allows great
flexibility in choosing the actual scaling function to use in a particular application.
For a more complete discussion of the properties of scaling functions and their design
see [31, 32]. For the purposes of this work, I will highlight two of the more important

facts for scaling functions that fulfill the multiresolution criteria, equation 3.10b.

e The integral of a scaling function will be [ ¢y(z)dz =1. By equation 3.9, this

will also hold for all scales and translations, i.e. [ ¢;1(z)dx =1, for all 7, k.
® Z h() [n] = \/g
3.3.3 Detail - Wavelet Coefficients

The scaling function allows us to take a signal or image and compute successive
coarser scale approximations. What it does not give us is the ability to capture the
details between the approximations at two scales. In the Laplacian pyramid, this
was captured by a simple subtraction of the coarse approximation from the original.

However, due to aliasing this does not yield a good model as to what information
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the ’error’ images contain. The redundant Laplacian Pyramid representation is also
correlated across levels. For the wavelet transform, there is a more precise manner
to calculate the multiresolution images.

In order to motivate this, let us look again at the function spaces V;. We already

know this is a set of nested function spaces,
pc -V, CV;C Vi - CL*(R) (3.15)

But now examine the difference spaces, W; defined as the orthogonal complement
of V; in V;41. This is the space spanned by V;;; but not contained in Vj, 1.e. what
must be added to V; to get Vj;;. Mathematically W; &V, =V ot W; =V, 0V}
The difference space contains the part of the signal present in the more detailed
approximation (scale j + 1), but not in the next coarsest space (scale j). We can

recursively decompose the function space V; as

Vi = Wra® Vg (3.16)
= WJ_l & (WJ_2 Y VJ—2)

] f(gwj)

Jj=jo
The decomposition is stopped at some coarsest scale of interest, jo, defined either by
the application or spatial extent of the signal. Thus the function space containing
our signal is composed of a sum of J — jg difference spaces (W;’s) and a single function
space. Since each W; is contained in Vj;; we can expand a set of the basis vectors

of W; in terms of the basis vectors of Vj;1, namely the ¢, ;:

P(z) = Zhl [n] ¢11(z —n) (3.17)
= Zm [n] V2¢;(2z — n)
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where h; are the expansion coefficients. 1); is also called the wavelet function, and
{7,[) j’k} will form a basis for the difference space W;. v, a weighted sum of the mother
scaling function, is called the mother wavelet function. Similar to scaling functions,
wavelets at any scale are invariant in shape, varying only in magnitude and spatial
extent. Note if ¢ has finite extent, ¥ will also have finite extent. Infinite extent
scaling functions and wavelets (that converge to zero as we move towards infinity)
are possible but are not discussed here.

Assuming that f(t) € Vj, from equation 3.16 we can expand it in terms of the
basis functions of the W;’s and a Vjo. Using the fact that the ¢,’s span W; and ¢,’s
spans V;, we develop the wavelet transformation equation from a weighted sum of

these basis functions, including the necessary translations in k:
J-1
V; = Z WJ) & Vio (3.18a)
flz) = Z Z d; [k] ¢j,k(m) + Z ao [k] ¢jo,k($) (3.18b)
k j=3i0 k

Using an approach similar to above for the approximation coeflicients, we can

determine the wavelet transform coefficients, d; [k] by a projection:

410 = (10) yal@)) =2 [ f@p(@a— )iz (.19

which again we can simplify through similar algebra to
d; [k]) = > b1 (—(2k —m)) aj41 [m] (3.20)

Thus the wavelet coefficients at any scale are calculable from the scaling coeflicients

at the next finer scale by a convolution relationship with h; similar to equation 3.14c.
The a; coeflicients are termed the approximation or scaling coefficients as they

are the approximation of the signal in the V; function space. The d; coefficients are

termed the detail or wavelet coefficients as they contain the detail of the signal within
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W;. As compared to the Laplacian pyramid, the wavelet coeflicients provide better
decorrelation of subbands and eliminate the redundancy.

The wavelet is completely defined by the scaling function as shown in equation
3.17. Using this and the properties of the scaling coefficients we can derive the

following properties:

e The integral of a wavelet function will be [ y(z)dz = 0. This will also hold
for all scales and translations, i.e. [, (z)dz =0, for all j,k. Thus the d; []

are zero-mearmn.

e For an orthogonal scaling function, hy [n] = (—1)"ho[l —n]. Thus hg is a
sufficient representation of both ¢ and 2.

e A Parseval’s relationship holds: f |f(75)|2 =)
%

> s "+ Slao kP

3=J

The modified convolution with hg and h; leads to a simpler calculation of expan-
sion coefficients than a continuous inner product. However, it is interesting to look
at various scaling/wavelet function pairs, especially if we remember that the DWT
calculates the inner product of the data with these functions. Figure 3.5 shows the
simplest scaling/wavelet function which was defined above in equation 3.5. This
is called the Haar basis. Figure 3.6 shows two of the Daubechies wavelet/scaling
function pairs. These were originally defined by Daubechies, and are designed to be
the shortest spatial extent functions which meet the necessary criteria with a given
number of vanishing moments. Parts (a) and (c) show the Daubechies - 4 functions,
with a zero first moment. Parts (b) and (d) show the Daubechies - 12 functions
with 5 vanishing moments. There will be % — 1 vanishing moments for a Daubechies
wavelet of length N. The importance of vanishing moments relates to the ability
to sparsely represent a continuous polynomial function. The Haar wavelet is ac-

tually the Daubechies -2 wavelet, although it maintains its own name. Note that
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the lower Daubechies wavelets are not smooth (The Haar wavelet is even discontinu-
ous). Finally, figure 3.7 shows another pair of wavelets/scaling functions that form a
biorthogonal pair. This concept will be discussed later, but notice these are symmet-
ric, as opposed to all other orthogonal pairs, with the exception of the Haar wavelet.

The hq coefficients are given in Table 3.1.

Scaling function - Haar

FIGURE 3.5. The Haar basis: (a) scaling function and (b) wavelet function

Wavelet Name | hg coefficients

Haar 0.707, 0.707

Daubechies - 4 0.483, 0.836, 0.224, -0.129

Daubechies - 12 | 0.111, 0.495, 0.751, 0.315, -0.226, -0.129, . ..

0.097, 0.027, -0.032, 0.001, 0.005, -0.001
Biorthogonal(1) | 0.038, -0.024, -0.111, 0.377, 0.853, 0.377,-0.111, -0.024, 0.037
Biorthogonal(2) | -0.065, -0.041, 0.418, 0.788, 0.418, -0.041, -0.065

TABLE 3.1. Filter coefficients for various wavelet bases

3.3.4 The Discrete Wavelet Transform

The algorithm above is based on knowing what the approximation coefficients are

at the finest scale of interest. Since computation typically involves discrete sampled
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Scaling function - Duabechies - 4 Scaling function - Duabechies - 12

(a}

Wavelet function - Duabechies - 4 Wavelet function - Duabechies - 12

FIGURE 3.6. The Daubechies-4 and Daubechies-12 basis functions. (a) and (c) are
for Daubechies-4, (b) and (d) are for Daubechies-12

data, an understanding of the linkage between the original continuous signal, the
discrete sampled signal, and the approximation coefficients is important. This finest
scale of interest is typically based on the sampling of the original signal. One obvious
choice is to use the signal samples as the approximation coefficients, which turns out
to be a very good approximation for most signals.

From a continuous signal, the exact scaling coefficients at scale j are found by
projecting the signal onto Vj, ie. a;[k] = (f(z),¢;x(x)). If f € V; this will be an
exact representation of f(x). However, this can not be guaranteed for an arbitrary
signal. However, if we take the signal samples, f [n] = f(nT) for signals sampled at
or above the Nyquist rate, these are a good approximation to the scaling coeflicients
a;[k]. In [33], it is shown that such samples are a third order approximation to
the exact scaling coefficients for weak constraints of the wavelet system used, and
increasing the sampling rate by a factor of M, will reduce the error in the coeflicients
by a factor of M2, This can be motivated intuitively by noting that, for fine enough

scale, the scaling function can be approximated by a Dirac impulse at its center, since




49

Scaling function - Bi-orthogonal 9/7 Scaling function - Bi-orthogonal 8/7

(a) b)

Wavelet function - Bi-orthogonal 9/7

|
FIGURE 3.7. The bi-orthogonal 9/7 basis functions. (a) and (c¢) form a pair; (b) and
(d) are the other pair.

S gbj(m)dm = 1 and as the scale increases, the support is shrinking. Knowing that a
perfect sampling system is a projection onto a Dirac impulse, as the scale increases, we
approach the limit. Mallat[31, p. 257] discusses how this can be extended to account
for finite resolution sampling (i.e. pixels) when calculating the scaling coefficients.
For the current work, I will use the pixel values as an adequate representation of the
scaling coefficients at the finest scale.

From equations 3.14c¢ and 3.20, the algorithm to calculate the discrete wavelet

transform (DWT) is

1. Define a; [k] as the pixel values.

2. aj_1 = | (ay ® hg[—n]), where | is downsampling by a factor of 2 (removal of

all even samples).
3. d_]_1 = l (a_] ® hl [—n])

4. If it is desired to transform to the next level, repeat the above procedure starting
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step 1 with only the a;_1 [k].

At each stage, N approximation coefficients are transformed to —]2! wavelet coeflicients
(d; [k]) and & scaling coefficients (a; [k]) — which is the same number as the mput.

The inverse DWT (IDWT) is calculated by the following algorithm

1. Start with ay [k] and d; [k].

2. as41 = (1 as) ® hg, 1 is upsampling by 2 (insertion of zero after each sample).
3. dys1= (T as) ® hy.

4. ajp1 =as41+dyy1-

5. Repeat the above procedure starting step 1 with ay;; and d; until original

scale 1s reached.

Note that the same filters are used for the DWT and the IDW'T, with the exception
of flipping the filters for the DWT, i.e. using ho[—n] rather than kg [n]. Also, the
borders must be addressed for finite length signals. This can be dealt with three

ways:

1. Assuming periodic extension of the a; vector, which is identical to circular
convolution. However, the discontinuity at the edge will produce large wavelet

coefficients that relate to the periodic extension, not the signal itself.

2. Assuming a folded symmetric extension of the signal at the edges. This ap-
proach reduces, but does not necessarily eliminate the issue of larger wavelet

coefficient magnitudes near the borders.

3. Defining 'boundary wavelets’[31] in addition to the original wavelets, which are
used near the border to maintain vanishing moments, and thus minimal wavelet

magnitude, at the boundary.
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This choice is critical in applications such as compression where large coefficients
will be coded. If they reflect edge discontinuity rather than signal content, this will
lead to wasted bits. However, in signal and image processing, the impact will largely
be restricted to the edges and thus not a large problem. In the following work, I'll
use the first approach except where specified when I'll use the second.

The forward and inverse DWT algorithms are shown graphically in figure 3.8.

FORWARD INVERSE

FIGURE 3.8. Algorithm for forward and inverse discrete wavelet transform

The 2-D DWT uses a separable implementation of the 1-D filters along the rows
and columns. However, this will yield four bands, rather than the two bands (a;’s
and d;’s) for a 1-D signal since we have four combinations of the filters applied to
the row/column. Skipping ahead, we will see that the scaling coefficients are a low-
pass representation and the wavelet is a high-pass. Thus each of the four subbands
from the 2-D image will be represented by two letters, LL, HL, LH, HH, where the
first letter specifies whether a low- or high-pass filter is used on the rows, and the
second letter represents the columns. The subbands are usually displayed as in figure
3.9(a) where a two-scale transform has been shown. Note that only the LL band is
iterated upon at each subsequent transform level and is replaced by the 4 decomposed
subbands. An example of a 2-D DWT is shown in figure 3.9(b) for the Lenna image.

Note that the magnitude of the wavelet coeflicients is shown to improve visibility.
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LL, LH7
LH8

HL_ |HH,
HLS HH8

@  ®)

FIGURE 3.9. 2-D DWT display: (a) is location of subbands in display. (b) is DWT

of Lenna image

3.4 Wavelet discussion - Frequency Domain

The above derivation has been motivated and derived strictly from a spatial do-
main point of view. However, as alluded to before, there is a strong connection
between multiresolution techniques and frequency domain concepts. High frequency
content would correspond to a high scale, whereas lower frequency corresponds to a
lower, coarser scale. In this section I'll develop this relationship in more detail. Both
perspectives are important for a full understanding of the DWT.

The Fourier Transform is a well-known signal decomposition. In the discrete case,
the Discrete Fourier Transform (DFT) is calculated through projection onto complex

sinusoids,
Flkl= " fln]e "% rat (3.21)

Each of the F'[k] terms represents the frequency content in f, corresponding to the

digital frequency around w = % One aspect of this representation is that there is

no time localization of the frequency content and vice versa. Thus, a plot of the DFT
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magnitude will give information as to which frequencies are in the signal, but lacks
any information as to the location and duration in time. As an example, suppose we
have two signals, each with 25 Hz and 50 Hz tones. The first has 5 sec of 25 Hz tone
and the 5 sec of 50 Hz tone; the second is 10 sec of superposition of 25 and 50 Hz tone.
The DFT magnitude does not provide a concise difference between the cases - both
will have energy in the 25 and 50 Hz bins. While the phase does provide the necessary
information to invert the transform and recover the exact time domain representation,
it does not give any time localization of frequency content. Thus, DFTs are best
suited for stationary signals where the frequency content remains constant in time.
This situation is graphically demonstrated below in figure 3.10 which is a time-
frequency distribution graph. A 1-D signal is represented in a 2-D plot, along the
time and frequency axes. Each rectangle represents a particular sample. In the time
domain (figure 3.10a), we know exactly where the energy is located (sequentially by
sample), but no localization at all in the frequency domain - the energy content in
any frequency band is indeterminate. The opposite effect occurs for the Fourier coef-
ficients (figure 3.10b): we know exactly what frequency band the energy corresponds

to, but no information of temporal location is known.

Frequency
Frequency

Time Time

@ (b)

FIGURE 3.10. Time-frequency distribution for a 1-D signal in the (a) time domain
and (b) Fourier domain
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One approach to mitigate this problem is to use Short-Time Fourier Transforms
(STEFTs). The concept is to window the function within a finite interval, take the
DFT, and then move the window (the translated window typically overlaps part of
previous location). By doing this, we end up with DFT coefficients (i.e. frequency
content) at each translation. In terms of time-frequency plots, frequency content
is somewhat localized. Graphically this is shown in a time-frequency plot in figure
3.11. The amount of localization possible is governed by a fundamental Heisenberg-
type limit which states AtAw must always be greater than a constant. Thus, we can
never exactly locate a frequency in time, and the more we try, the worse the frequency
resolution becomes. Although the blocks are shown with solid borders, this is simply
the standard deviation of the extent in time and frequency. One additional issue
with STFT’s is that the windowing functions can introduce artifacts in the transform
domain.

One aspect to note about the STFT is that each of time-frequency ’atoms’ will be
of constant size. However, in many applications, the high frequency content (e.g. an
edge) is short in duration while the low frequency content (e.g. drifts in background)
changes slowly. Thus we often desire better localization of high frequencies and can

live with poorer spatial/time resolution for low frequencies.

Frequency

Time

FIGURE 3.11. Time-frequency distribution for 1-D signal using a STET
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Another time-frequency analysis tool is the Wigner-Ville distribution. This leads
to a 2-D plot of the energy density at a position u, and frequency §:

[e o]

We(u, &) = / f (u + %) f* (u - %) e Tédr (3.22)

While useful in some applications, it suffers from the fact that it is a quadratic term
which leads to interference terms that are not related to the signal, but rather an
artifact of the distribution.

The DWT provides another alternative approach. In the DWT, the coefficients
are calculated via a convolution type relationship as discussed in the previous section.
Since convolution implies multiplication in the Fourier domain, let us look at the
frequency response of the ‘filters’ hg and h; which correspond to ¢ and 7. From
the concept of approximation, we can expect hg to be a low-pass filter. While not
providing a formal proof, this can be seen since Y hg (n) = V2, H, 0) = V2. The
definition of ¢ also requires that Hy(m) = 0. For an orthogonal basis, hi(n) =
(—=1)" ho(1 — n). Thus, hy will be related to hg as the frequency shifted version,
H; (0) = 0 and H; (7) = v/2. This implies that h; is a high-pass counterpart. A plot

of the frequency response magnitude for the Daubechies - 12 wavelet is in figure 3.12.

FIGURE 3.12. Frequency response of Daubechies-12 filters. The scaling coefficient
filter is solid, the wavelet coefficient filter i1s dashed.

Since we are downsampling after each of the filters, a natural question is what effect

does aliasing have. If we calculate a DWT and then the inverse DWT, accounting
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for the effects of downsampling and upsampling, the aliasing will cancel if
|Ho ()[* + |Ho (w +m)[* = 2 (3.23)
This also implies that for FIR filters,
hi(n) = (=1)" ho(1 — n) (3.24)

This interesting result shows that enforcing cancellation of aliasing is consistent with
the derivation using spatial domain multiresolution function spaces.

A look at the frequency response of the DWT leads to an understanding of how
the DWT tiles the time-frequency plane. The first level of wavelet coeflicients, due
to the high-pass nature, will be the information from the top half of the frequency
domain, £ < w < . Note that as the filters are FIR, this is not a sharp cut-off at 7,
but for the discussion here it will serve as a reasoné,ble approximation. The next scale
will be a band-pass, - < w < 5. This can be understood from the downsampling
of the approximation coefficients (a;’s). Due to downsampling, the digital frequency
of  for the d;_, coefficients relates to w = % in the original signal (d; coefficients).
Thus, a high—pass filter on the downsampled data extracts the frequencies T < w < &
of the original signal. Subsequent downsampling will shift the band-pass in a similar
manner. Note again, that the band-pass will not be a sharp cut-off.

The time-frequency plot of the DWT coefficients is shown in figure 3.13, where we
see the multiple samples related to the higher scale frequencies and fewer coeflicients
related to the lower frequencies, in a dyadic (i.e. factor of two) relationship, as
expected due to downsampling. Note that frequency axis has been labeled scale
to point out the lack of sharp cut-off in the filters and thus the data. The exact
relationship between frequency and scale can be derived by the frequency response
of the filter h;. The highest scale coefficients (top) are the d; [k] terms, the next
band down are the d;_; [k] terms, and so on. For a signal of length N, we find that

J = log, N and there are ¥ d; [k] terms, § d;_; [k] terms and so on. For a complete
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decomposition of J levels, the approximation output will be a single value. Since all
d; [k] are zero-mean, the remaining a; [k] term(s) are the DC term — thus the name

scaling coefficient as it scales the overall magnitude of the signal.

Scale

Time

FIGURE 3.13. Time-frequency distribution for a 1-D signal in the wavelet domain

In order to facilitate discussions, the following terms are commonly used and can
be visualized in figure 3.13. The children of a wavelet coefficient are the higher
scale wavelet coefficients that share the same temporal location — every coeflicient
(except the highest scale) will have two children. The parent of a wavelet coefficient
is the coefficient at the next lower scale which shares the same temporal location -
every coefficient (except the coarsest scale) will have one parent. The ancestors of a
coefficient are all of the lower scale coefficients that share the same temporal location
(parent, parent’s parent, etc.). The descendents are all of the shared higher scale
coefficients (children, children’s children, etc.).

Chapter 4 will discuss particular applications of the DWT. However, there are
certain properties of the DWT that bear discussion here. These qualities of the DWT

lead to their success in the applications discussed below.

P1: Locality: As discussed above, wavelet coeflicients represent a localized content
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in both time and frequency. Thus modification of a wavelet coefficient will
have only a local effect on the signal. Alternatively, modification in the Fourier

domain has a global effect.

P2: Multiresolution: The transform coefficients provide insight into signal proper-

ties across a set of scales.

P3: Sparse Representation: DWTs tend to be sparse and have few large coefficients

that denote signal information at that scale.

P4: Decorrelation: The DWT approximately decorrelates the signal.

From these properties and using the self-similarity of natural images, the following

additional properties are known.

Distribution: DWT coefficients are distributed as a large peak near zero with heavy
tails. They are not Gaussian in distribution, but either a Generalized Gaussian
distribution (GGD) or a Gaussian Mixture model (GMM) can closely approxi-

mate them.

Magnitude decay: Coefficient magnitudes decay exponentially across scales.

Persistence/clustering: Large/small magnitudes tend to propagate across scales and

be clustered within the same scale.

3.5 Variations on a theme

The DWT discussed above is the most straightforward implementation. Multiple
variations of the ideas discussed above have been developed to extend the concepts
for various reasons. This section will discuss a few of them that are critical to my

research.
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3.5.1 Biorthogonal Wavelet Transforms

Biorthogonal wavelet transforms are generalization of orthogonal transforms de-
scribed above. One of the keys is that, similar to a biorthogonal basis above, the
decomposition filters hy and h; are not the same as the synthesis filters, denoted as
go and g;. The modification to the orthogonal algorithm of figure 3.8 is shown in
figure 3.14. To ensure perfect reconstruction, we arrive at a similar relationship to

equation 3.24,

ho[n] = (=1)"g1[1 —n] (3.25a)
hiln] = (=1)"go[l —n] (3.25b)

This shows that the low-pass decomposition filter is conjugate to the high-pass syn-
thesis filter.

FORWARD INVERSE

d

j-1

FIGURE 3.14. Algorithm for forward and inverse discrete wavelet transform using
bi-orthogonal wavelets

The benefit of this type of transform is that there are more degrees of freedom in
designing biorthogonal wavelet bases than in the orthogonal case due to the addition
of the g filters. One of the primary results of this is that symmetric biorthogonal
wavelets are possible. In the orthogonal case, the Haar wavelet is the only possible

symmetric basis.
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There are drawbacks to the biorthogonal transform. First, there is no Parse-
val type equality. Second, while an orthogonal transform of Gaussian noise remain
(Gaussian, this is not true for biorthogonal transforms. Some biofthogonal construc-
tions seek to minimize these effects by being ‘almost’ orthogonal (A close to B in
equation 3.2), but there is no way to eliminate them. The 9/7 Biorthogonal wavelet
set (the one shown in figure 3.7 above) is often used as a standard choice in compres-
sion algorithms as it works well for a large class of images. The frequency response

of the biorthogonal 9/7 filter set is shown in figure 3.15.

FIGURE 3.15. Frequency response of bi-orthogonal 9/7 filters. The first pair of
low-pass/high-pass filters is solid, the second pair is dashed.

3.5.2 Wavelet Packets

The above DW'T"s are based on decomposition of only the low-pass output. How-
ever, we can also decompose the high-pass output (d;’s) as well. If we do this at
each branch, we end up with a binary tree for the algorithm. The time-frequency
tiling for this would then be similar to the STEFT, where all of the atoms are of a
uniform size. The effect of this is to further separate each of the detail vector spaces,
W;. This allows great freedom in parsing out the time-frequency plane. For certain
applications, this will be necessary and/or beneficial to account for particular system

or signal characteristics.
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3.5.3 Undecimated Wavelet Transforms

The DWT as discussed above is a linear transform, but is not shift invariant due
to the down sampling. This is problematic for many applications such as computer
vision, where a simple shift in the image should not change the transform data other
than a similar shift. A straightforward way to achieve this is to remove the downsam-
pling and upsampling steps - termed an undecimated DWT. This is also called the
redundant transform or a stationary transform. However, this also requires changes
to the filters to account for the lack of down/upsampling. In the spatial domain, the
downsampling implies that the filter will be applied only to every other sample at the
next level of decomposition. To account for this, the filter must be upsampled by a
factor of two at each level by zero insertion. This is called the algorithm a trous or
‘algorithm with holes’ as a reference to the sparsity of the filter as the decomposition
progresses. Another method is to calculate the decimated DWT for each shift of the
signal and interleave the results. At the first level this requires two DWT’s due to
the elimination of half the samples at each downsampling. At the second level, it will
require 4 shifts, two for each of the two first level shifts. Shensa[34] demonstrates
the equality of the algorithm & trous and interleaving decimated DWT’s.

The undecimated DWT provides a shift invariant transform, but at the expense
of redundancy. For a N-length signal with M levels of decomposition, (M + 1) * N
samples will be output. As will be demonstrated below, this can markedly improve
the robustness of algorithms, especially denoising,

The algorithm a trous also provides a third perspective on the DWT parsing
of the time-frequency plane shown in figure 3.13. Upsampling the filters changes
their frequency response by contracting the frequency axis by a factor proportional
to the upsampling factor. The first wavelet decomposition is calculated by high-
pass filtering the data, therefore the predominant frequencies at this level will be

£ <w < 7. Upsampling hy will change the frequency response by contracting the
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frequency axis by a factor of 2. That is, the peak at w = 7 will be at w = 5. The
assumed periodic nature of the DFT will then imply the filter will fall off to zero at
w = 7 (dashed line in figure 3.16(a)). At the next (third) level of decomposition, the
peak will be at % and the periodic extension implies a new peak at w = 3{ as seen in
the dotted plot in figure 3.16(a). However, since the first and second decompositions

removed most of the energy in frequencies above 7, the wavelet coefficients at the

third decomposition level have little energy above w = 5. Figure 3.16(b) shows
the resultant frequency content of a transform for an input of constant frequency
magnitude, which demonstrates this fact. For the plots in figure 3.16, a Duabechies-
20 wavelet system was used.

Generalizing this, for a signal with maximum scale J, the primary frequency

content at scale j will be

m
577 <w< m (326)
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FIGURE 3.16. (a) Frequency response of wavelet filters using the & trous algorithm.
Solid lines are the first level, dashed is second level and dotted is third level in the
decomposition. (b) is the resultant band-pass nature of the respective levels for an
input with flat frequency content.
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CHAPTER 4
IMAGE PROCESSING WITH WAVELETS

4.1 Overview

An understanding of the properties of wavelet transforms, as discussed in the
previous chapter, lead to many applications in signal/image processing. In this
chapter I will discuss some of these applications as they apply to my work. In
general, most algorithms are based on the outline of figure 4.1. The DWT is used to
transform the data into a form that allows either a simpler or better (hopefully both)
representation of the data in terms of the desired application. After processing the

transform data, it is inverse transformed to provide the final result.

Forward .| Wavelet Domain Inverse ~
DWT Processing DWT

g —»

A
A
oQ

FIGURE 4.1. Algorithm for wavelet domain processing

The first section will discuss denoising a signal or image via wavelets.  This
is necessary background for the next section which will overview image restoration
using wavelets. The last section will discuss techniques for image interpolation with

wavelets.

4.2 Wavelet Denoising Algorithms

Let us use the model

g=f+n (4.1)
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where ¢ is the observed data, f is the object, and n is the noise. The goal is to
determine f given g and some knowledge of the noise.

One solution to this problem is to determine the minimum MSE estimate of f,
which is the Wiener estimate. In the Fourier domain it is

~ 1
F=WG= W} G (4.2)

Sy (€m)

where S, and Sy are the PSD of the noise and signal, respectively. This is the
same as equation 2.21b used in image restoration, without the inverse of the blurring
operator.

Wavelet domain techniques have produced better results both in terms of lower
MSE and subjective visual quality than possible by Wiener estimates. The intuition
as to why wavelets provide a good transform to denoise is that the wavelet domain
yields a sparse (or compact) representation. This implies that the energy of the signal
is in few large coefficients. Since the DWT is a linear transform in an orthonormal
basis, AWGN will remain AWGN. Thus the wavelet domain signal energy is combined
in few larger coefficients with the same level of noise ~ making it easier to identify and
retain. An interesting side note is that the compactness in representation also leads to
good data compression performance. Transform domain denoising and compression
share similarities: denoising seeks to identify and retain those coefficients related to
the signal and not noise, while compression seeks to code only the most important
coeficients, which are those that contain the most information about the signal. In
fact many wavelet compression techniques do suppress AWGN noise in the process.

The first approach to wavelet domain denoising was based on thresholding of the
wavelet coefficients. The Wiener filter can be looked at as a variable thresholding
of the Fourier coefficients — the magnitudes of the frequency components are reduced
in relation to the expected SNR. The original wavelet based denoising technique is
similar: threshold the magnitude of the wavelet coefficients based on SNR. However,

in the wavelet domain, this is accomplished by a simple thresholding — setting coef-
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ficients below a threshold to zero. Note that the thresholding is applied to wavelet
coefficients only, and not the scaling coefficients. Originally proposed by Donoho
and Johnstone[35], thresholding techniques have been shown to be very powerful.
Fourier denoising techniques seek to separate the noise from the signal as much as
possible, and then attenuate those frequencies based on the SNR prediction from the
PSDs. Wavelet techniques are different in that the signal and noise are separated by
amplitude and thus are not reliant on a priori signal PSD predictions.

The two approaches to thresholding are

e Hard thresholding: set to zero all coefficients with magnitudes below the thresh-

old without adjusting any others,

o dj,k, |dj,kl >T
i = { 0, djpl ST (4:3)

o Soft thresholding: set to zero all coeflicients with magnitudes below the thresh-

old, but also reduce the magnitude of those above the threshold by the amount

of the threshold, i.e. shrink all coefficients toward zero by the amount of the

threshold.
dj,k — T, dj,k >T
dj,k = dj,k -+ T, dj’k ik (44)
0, |djx| <T

The results will have slightly different characteristics. Hard thresholding will
provide better MSE, but may lead to spurious oscillations within the signal. This is
due to an induced non-continuity of the wavelet coefficients near the threshold. Soft
thresholding retains the original smoothness of the image and contains fewer spurious
oscillations (better visual quality).

The calculation of the best threshold is not obvious and involves a similar trade-
off as discussed previously with LSI filters. For a low threshold, the result will look
similar to the signal, but will retain most of the noise. As the threshold increases,

the noise will be reduced, but the resultant signal will become smoothed, due to
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removal of some signal energy from the transform domain. As expected, however,
the threshold will always be a function of the noise variance.

The ‘“universal’ threshold for 1-D ‘smooth’ signals 1s T' = a\/m , with o the
noise variance and N the number of samples[35]. This is derived either from 1)
minimax estimation optimization[31] or 2) determining what the highest expected
noise amplitude will be. The use of N in the threshold is a result of an assumption in
the above derivations that N samples are taken from a continuous function on [0, 1].
As the number of samples grows, redundancy in the samples increases as does the
probability of large noise values from the tails in the Gaussian distribution. This
implies that a higher threshold should be used. However, the universal threshold
does not yield the best results either in terms of MSE or visual appearance — it is
overly ambitious in noise removal at the expense of signal smoothing. However, it is
optimal in the minimax estimation sense, i.e. minimizing the maximum error for any
allowable signal.

More generally, for an arbitrary signal, the threshold is calculated as a multiple
of the noise standard deviation. For certain classes of signals, this can be optimized
in the MSE sense. From experiments on multiple typical signals, the MSE optimal
threshold for 1-D signals is usually 1 — 1.50, whereas for 2-D signals it is 2 — 30. For
cases where the noise standard deviation is not known, it can be estimated from the

median of the absolute value of the samples[31, p. 459],

median

7= 0.6745 (45)

Equation 4.5 is derived from samples of AWGN only. However, the estimate is fairly
robust in the presence of some signal as the median is relatively insensitive to the
addition of a few large samples.

The above techniques can be further improved by using the UDWT and applying
the threshold to it. This will provide improved results, as originally demonstrated

by [36]. If we look at the decimated transform, shifting the original signal by one
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sample gives a different, but equivalent, representation of the data in the wavelet
domain. By using the average of all possible shifts (equivalent to denoising the
undecimated transform), the results are improved. This should be expected in the
same way multiple noisy measurements have more information than one measurement,
assuming constant noise variance.

Simple coefficient thresholding provides a very computationally efficient manner
to denoise a signal. However, it ignores additional available information that may
be used to increase performance based on statistical models of the data and trans-
form. The next step is based on modifying the thresholds based on models of scale
dependencies. In [37, 38] a spatially varying threshold is developed based on the
local statistics of the coefficients, motivated by similar work in the compression com-
munity. They develop the subband dependent threshold of T;; = 02/0;x, where
o? is the noise variance and 0?,,; is the wavelet coeflicient variance, adapted to each
individual coefficient based on the statistics of ‘similar’ nearby coefficients. Chang-
ing the threshold based on the wavelet coefficient variance is intuitively reasonable.
As the wavelet variance increases, this implies signal information such as an edge —
the threshold is decreased to include any signal present, at the possible cost of some
noise. In smooth areas (low signal content) with low wavelet variance, the threshold
increases to reduce noise.

Ghael and Choi [39, 40] developed the idea of Wiener filtering the wavelet coeffi-
cients. They also show how hard thresholding is equivalent to a Wiener filter for the

model of the signal estimate given by

5 o0, |dj,k| >T
i = { 0, ikl < T (46)

The Wiener filter will be optimal in an MSE sense for orthogonal transforms in
AWGN, but require an accurate model of the signal.
The next major change was to apply a Bayesian approach of using a probability

model of the coefficients[41]. The sharp peak at zero and heavy tails experimentally
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observed for natural images rule out Gaussian statistics. The two competing models
that show validity are the generalized Gaussian distribution (GGD) and Gaussian
mixture model (GMM).

The GGD model is given by:

puo(e) = Loy (- s 2] ) 7
T(3/v)

r1/v)

where ¢ is the standard deviation, and v is the shape parameter. Two special cases

where 7(v) =

are v = 2, the Gaussian distribution and v = 1, the Laplacian distribution. Written

more compactly to see the relation to the Gaussian case,

por(s) = C) % e (- [E1] ) (19

o’ o’
Each coefficient is represented as a draw from a GGD with ¢ and v calculated a priori
or from the data itself.
The other model is a GMM, which represents the density of a subband as a sum

of Gaussian distributions:

M

p(a?) = Zm:l pmfm(x) (49)
where f,(z) are N(0,02,), and Z:{:l Pm =1

A GMM with M = 2 typically results in a sufficiently close model to the observed
density functions — typically one Gaussian will have a small o to account for the peak
at zero and the other a large ¢ to account for the tails. Thus, the probability is
approximately the sum of (at least) two Gaussian densities with variances o, and
mixture probabilities pp,.

The ML estimation using the above distributions has also been regularized using
penalty functions based on the complexity of the resulting image[42]. The intuition
is that real-world images tend to be fairly smooth. Complexity can be calculated in

various manners, such as the length of the smallest binary string to code the image.
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Moulin[43] has also shown the equivalence of hard thresholding and MAP estima-
tion for certain statistical assumptions on the data.

While these models have yielded improved performance, they still are based on a
statistical iid assumption of the transform coefficients in a subband, which ignores the
persistence/clustering property. To accommodate a non-iid assumption, Crouse[44]
implemented a Hidden Markov Model (HMM) based approach. The wavelet coeffi-
cients are modeled by a 2-state GMM, but the state variables ( o; and p;) are not as-
sumed independent. By allowing these to be interdependent, either within the same
subband (Markov chain) or across scales (Markov tree), the persistence/clustering
properties can be modeled. As an example, from the magnitude decay property of
the DWT, we can expect that the signal variances, cr;)f, should decay approximately
exponentially across scales. Depending on the application, either or both of the
inter /intrascale dependencies can be used.

The last approach I'll discuss is based on trying to exploit inter- and intrascale
dependencies of the data[45] in a different manner. The algorithm is based on using
a threshold, Ty;,, to partition the coefficients into two sets, Gy and Ginsig based on
magnitude. The process is started at the lowest (coarsest) scale in the decomposition.
After the coeflicients are segregated, they are processed separately, taking advantage
of intrascale dependencies. The G, coeflicients are experimentally seen to follow a
Laplacian distribution with zero mean. Thus, the MAP estimate is a soft-threshold
with threshold adapted to local signal variance[43]. The Ginsiq coefficients typically
represent the smoother areas and are modeled as a GGD distribution. For this case

the MAP estimator is a Wiener-type relation:

~2

3 Tk

dj,k =3 2 dj,k
o5+ 0y,

(4.10)

where 7, is an estimate of the wavelet signal variance and 0, 1s the noise variance
estimate. At each subsequent higher scale, Gg;5 and Gins;g are based on the (denoised)

magnitude of their parents, taking advantage of interscale dependencies (persistence).
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The threshold T, is determined experimentally by maximizing the overall likelihood
of the data based on the expected distributions of Gy and Gingg. While this is a
relatively simple and straightforward approach in the wavelet domain, the results are
among the best reported.

One interesting note is that in both of the previous algorithms (and generally in
compression algorithms), better performance was noted when exploiting interscale
rather than intrascale (parent-child) relationships. Recently Liu has shown that
this can be understood through looking at the Mutual Information (MI)[46]. She
develops a methodology for estimating the mutual information between neighboring
coefficients in the same band and across bands. The results show that the MI of
the neighborhood is much higher than the MI of the parent. Also of note is that
as the filter length increases, the parent-child MI tends to decrease. One possible
explanation is that longer filters determine the coefficient from a larger neighborhood,
"diluting’ the parent-child relationship. While the paper used only a single parent
and multiple neighbors, the results do suggest a reason for the previous supremacy of
intrascale models, with only slight benefits for adding interscale dependencies. This
does not imply there is no interscale MI (which would be bad news for my super-
resolution attempts), just that it is less than intrascale ML

While the above work has all been based on signal independent AWGN, there
has been some work on Poisson noise. The simplest approach is to work with the
square root image under AWGN assumptions. In [47], Nowak provides an alternative,
wavelet based approach, that uses multiple short exposure images and develops an
estimator based on the cross-validation of the images, with slightly improved results
over square-root processing. Nowak has also extended the HMM approach to ac-
count for Poisson statistics[48]. In [49], a new approach is used, based on multiscale
multiplicative innovations. The concept is to use the framework of the Haar wavelet,
where each coarser scale is the sum of the finer scale, but use multiplicative/ratio re-

lationships instead. This allows a more precise model of the parent-child relationship
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for Poisson data and the use of Bayesian prior. It also appears that an approach by

Mihcak[50] should be extensible to Poisson data.

4.3 Image Restoration

Let us again take as a model the typical linear shift-invariant system:
g=h®f+n (4.11)

where ¢ is the received image, f is the object, h is the PSF which we assume is

known, n is the noise, and ® represents convolution. In the Fourier domain we have
G=HF+N (4.12)

The optimal (in terms of MSE) linear solution for deconvolution with Gaussian
noise is the Wiener filter, which is, in essence, an inversion of H followed by a regu-
larization of the Fourier magnitudes based on the SNR. Donoho[36] proposed a new
method using wavelets. The process is to deconvolve with H~1, but then denoise in
the wavelet domain. This has been termed the Wavelet- Vaguellete Decomposition
(WVD). The benefit here is the superior performance of the non-linear wavelet do-
main denoising. The drawback is that AWGN, after inverse filtering, is no longer
necessarily white. Thus, the denoising must account for this colored noise. Addi-
tionally, where H is zero, the noise variance after inverse filtering will tend to infinity.

To address this problem, Kalifa et al.[51, 52] proposed a mirror wavelet basis. The
concept is to adapt the wavelet basis to a known zero at the digital frequency w = .
In particular, since diffraction induces a monotonic decrease in the frequency response,
the only zero will be at the diffraction cut-off. To counteract the singularity in H™*
at the diffraction limit, a mirror wavelet basis is used. As an example, they use a 1-D
signal with a singularity in the inverse filter at w = w. Figure 4.2 (solid line) shows

the inverse filter frequency response for a circular aperture imaging system. The noise
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variance, after inverse filtering, will be proportional to this value. With the standard
DWT, the highest resolution subband contains data from the frequencies § <w < 7.
The extremely large noise variance near the singularity at w = 7 will overwhelm any
signal in this whole wavelet subband. This implies a need is to isolate the ‘noisy’
frequencies (due to inverse filtering) in the wavelet domain. The mirror wavelet basis
is a wavelet packet transform where, in addition to iterating on the low-pass output,
the high-pass output is also filtered as shown in figure 4.3. This yields the standard
wavelet coefficients, d; x as well as the mirror coefficients, d;x. The decomposition is
called a mirror basis due to the symmetry of standard and mirror coefficients.

The notation d; and JJ- denote that these coefficients are at the same level of
decomposition, but on opposite branches. The exception is the scaling coefficient

signal a;_, (n = 2 in figure 4.2), which has a wavelet coefficient counterpart which

I’ll denote as Jj,n_l.
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FIGURE 4.2. Frequency bands for mirror wavelet basis (dashed lines) and inverse
filter for diffraction limited imaging system (solid line)

If we look in the Fourier domain, the frequency response of the wavelet basis, 9,
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FIGURE 4.3. Algorithm for mirror wavelet basis decomposition

has energy concentrated on a interval

7 73] (413

The mirror basis, 9, will have energy concentrated around

s s
[’7{' — m, mw— m] (414)

as shown by dotted lines in 4.2. Taken together, the ¢; and 171j form an orthonormal
basis. The significant benefit of this basis is that, for all subbands (except the highest
frequency band), the noise variance remains within a bounded factor. This is the
isolation of the singularity that is needed. FEach of the individual subbands can be
denoised with a subband dependent threshold based on the noise variance in that
particular subband.

While powerful, the mirror wavelet basis requires a certain class of blurring op-
erators, those with a single zero at w = 7. In order to address the more general
deconvolution problem, Neelamani[53] developed an approach by combining Fourier
and wavelet domain regularization. The motivation is to use the benefit of non-linear
wavelet denoising, but to account for the (possibly multiple and unknown a priori)
zeros in H™1. The concept is to perform a Wiener-like restoration first to regularize

the the wavelet domain solution. The regularization in the Fourier domain is given
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F= H' () G (4.15)

2 Sn (€,
[H(E, ) + o2

where o is the regularization term. Using @ = 1 yields the standard wiener filter.
As o — 0, the Wiener filter will approach a straight inverse filter, yielding a less
blurred, but noisier image. When « = 0 this is the straight inverse. For 0 < a <1,
the singularities in the inverse will be partially regularized. The intuition is to use
Fourier regularization to reduce the noise amplification near zeros in the inverse filter,
but still rely on wavelet denoising for the final solution. Optimizing the choice of «
in a MSE sense is addressed, but must be set experimentally.

Additionally, there have been other variations based on various statistical assump-
tions and techniques. [42] uses a complexity measure to regularize the ML solution.
[54] takes a stochastic approach and derives a Kalman filter for the coefficients. [55]
develops a algorithm by iterating between calculations of the state coefficients in a
2-state GMM model and the MAP estimate of the coefficients. Complex wavelet
packets have also been used[56]. This is based on using complex wavelets with a
packet decomposition to denoise the result of applying the inverse filter, H ~1. The
benefit appears to derive from the use of packets and the redundancy of the complex

transform.

4.4 Image Interpolation

Wavelets can also be used for interpolation of images. Similar to the zero-padding
common in the Fourier domain, we can zero-pad the wavelet-domain. This is accom-
plished by using the original image as the LL band and adding empty LH, HL, and
HH subbands. In essence we create a new, higher scale without any data in it. We
note that the algorithm for an inverse DWT upsamples the LL band signal, low-pass

filters it, and then adds in the contribution from the higher scale wavelet coefficients.
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If the higher scale wavelet coefficients are zero, there will be no contribution. Thus,
this performs the same operation as classical interpolation - upsampling and filtering.

Wavelets yield a wide variety of possible “filters’ to use. Two limiting cases are 1)
the Haar wavelet, which yields Zero Order Hold (ZOH), or replication interpolation,
and 2) an infinite Sinc wavelet yields the traditional bandlimited interpolation.

In wavelet interpolation, if we have an estimation of the higher scale coefficients
other than zero, the inverse DWT will add this information to the image. Remember
this is due to the fact that wavelets coefficients contain only the difference information
for the higher scale. This estimation of higher scale coeflicients is the basis of the
wavelet interpolation techniques below.

In [57], the basic premise is to estimate the higher scale data and then enhance
it through a POCS-type algorithm. Assuming we are estimating the j + 1% scale,
they start with the j — 1% scale since the 4% scale is thought to contain many non-
meaningful extrema and be too noisy. The original estimate is formed by first iden-
tifying wavelet extrema at the j— 1% scale. These are then placed in the j + 1% scale
using the extrapolated (exponential) relationship of the magnitudes of the extrema
between scales. Once the extrema locations and magnitudes in the j + 1% scale are
estimated, intermediate points are estimated through enforcing monotonicity[58].

The last step is to use three POCS constraints to improve the estimate:

1. The data must be consistent with wavelet transformed data, e.g. an element of

Vi1, the subspace of L*(R) which is the range of the wavelet transform.
2. A downsampled version of the interpolated data must equal the original data.

3. Local extrema in the higher-scale data should reflect sharp variations in the

original data, i.e. extrema will persist among scales.

The first two are fairly trivial in projection operator: (1) is simply a forward and

inverse wavelet transform of the data, and (2) is simple replacement of even values
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in the upsampled (lower-scale) data with original data. The third constraint appears
to perform the bulk of the interpolation, but is heuristic in nature. It is not very
well described other than to enforce a penalty function for extrema different than the
estimates or at locations far from the estimated location.

Carey et al.[59, 60] use the same concept of estimating the higher scale coeflicients
with a different approach. As above, they use the undecimated DW'I' and base their
extrapolation on the j — 1% scale. However, they use local Holder regularity, a
mathematical measure of image smoothness or regularity. Conceptually, they use
the fact that low regularity areas (e.g. strong edges) have high correlation between
scales and that the coefficients will decay exponentially between scales. Smooth or
textured areas do not have such a relationship. By using a search to determine where
coefficients have a exponential decay, they mark out the edges. The feature in scale
j — 1 is the reduced spatially to 1/4 its size (to reflect decrease in size for 2 scales
higher) and copied into the j+ 1 scale using a cubic spline approximation. Similar to
above, the exact location is based on extrapolation from previous scale locations and
the magnitude of the extrapolated data is adjusted, based on a mathematical fit of the
data from previous scales. Results for Lenna show visual improvement of the image
when magnified, compared to bandlimited interpolation. However, the Lenna results
are significantly better than for Mandrill, apparently due to the relative proportion
of sharp edges to texture. The algorithm searches only for edges that propagate
through scales, and thus is best at images with such edges, and not for images with
texture or other features.

The last technique is based on algorithms used in resolution enhancement of
imagery|61], notably from NTSC to HDTV. The process is quite heuristic, but does
show some minor improvement. The concept is to look for zero-crossings in the DWT
coefficients which are assumed to be from edges. Higher resolution subband data
is added where an edge is estimated based on statistics from a step edge, with the

constants set by training images.
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There are also two other interesting wavelet based techniques that demonstrate
the use of wavelets in image processing and are similar in spirit to interpolation. The
first concept is to perform image fusion in the wavelet domain. Several remote sens-
ing systems (e.g. SPOT, Landsat) have both a high resolution panchromatic sensor
and a lower resolution multispectral sensors. Several techniques have been devel-
oped to fuse the two products together and provide high resolution panchromatic
imagery[62]. The overall technique is to either add or substitute some data from
the higher scale wavelet transform bands of the panchromatic image into the wavelet
transform bands of the multi-spectral data (creating them if necessary). The best
success is from applying this addition/substitution to the intensity band of the data
— i.e. transform into IHS form (intensity, hue, saturation), perform wavelet coeffi-
cient addition/substitution on the intensity band (leaving the H and S bands zero),
inverse wavelet transform, and then transform back to the original multi-spectral
bands such as RGB. The number of bands added/substituted is dependent on the
relative difference in resolution of the panchromatic vs. multi-spectral images. The
result is multispectral imagery with new higher scale data derived from the high reso-
lution panchromatic image. This technique can be looked at as equivalent to wavelet
based super-resolution of the multispectral data, given the a priori knowledge of the
panchromatic data.

A similar technique has also been used in fusing multispectral imagery of a given
resolution[63]. Given multiple bands of the same scene, often a goal is to develop a
fused image. Averaging of all the data is one solution, but can wash out details that
don’t persist across bands. A simple wavelet-based approach that has shown success
is to compute the various wavelet transforms and then average the coarse bands as
these contain the coarse background information. For higher scale bands, choose
the largest coefficient from any of the DWTs of the multispectral bands. Thus, the
coarse data is consistent across the bands, and the details are picked from the band

in which they are strongest.
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CHAPTER 5
RADIALLY SYMMETRIC TRANSFORMS

5.1 Overview

Remembering that a circular aperture imaging system has a radial symmetry in
the frequency domain, this chapter introduces a new transform that will maintain a
similar symmetry. This will be very useful in deconvolution of imagery from circular
aperture imaging systems. The first section lays out the intuitive motivation for the
new transform, which is described in the second section. Following this, the transform
is described and extended in a similar manner to the mirror basis described previously.
The next sections discuss the actual deconvolution algorithm and the results. The

final section is a short discussion on this transform and the curvelet transform.

5.2 Motivation

The mirror wavelet basis discussed above provides a powerful tool in image decon-
volution. The power of this transform is the use of wavelets to denoise the results of
an inverse filter. The mirror basis keeps the noise variance bounded in each subband
(except, of course, the single subband at the singularity). However, this construc-
tion is based on a 1-D view of the frequency response. When the DWT is applied
separably, the tiling of the frequency domain for a 2-D transform is shown in figure
5.1(a). Note that only a single quadrant (positive frequencies) is shown due to sym-
metry in the other three. As expected, the frequency w = 7 is isolated in both the
horizontal and vertical directions. The examples given by Kalifa et al. in [51, 52]
use a separable blurring function, which isolates the zero in the frequency response
of the filter at the edges of the frequency plot shown in 5.1(a), that is when either

wy & T or w, &~ 7. However, if we look at a circular aperture imaging system, the
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singularity in the inverse filter is located at a constant radial frequency, as shown in

figure 5.1(b).

pi [l m———

pir2 pir2 \

0 pi/2 pi 0 pir2 pi

(a) (b)

FIGURE 5.1. (a) 2-D frequency domain tiling of separable mirror wavelet basis,
positive frequencies quadrant only, (b) with diffraction cut-off of circular aperture
imaging system

Plotting this inverse filter frequency response along either frequency axis (w, or
wy) is shown in figure 5.2(a), as discussed previously. However, in figure 5.2(b), the
inverse filter is plotted along the diagonal. We see that the singularity is not isolated
in the highest mirror wavelet subbands anymore. In fact, the singularity passes
through the first mirror subband, i.e. the subband for frequencies § < wy,wy < -32”-.
Thus, the separable mirror basis does not truly isolate the singularities of a circular

aperture imaging system.

5.3 Radially Symmetric Transforms

In this section a new method to calculate a transform that will maintain radial
symmetry in the Fourier domain will be developed. I will refer to this as a radially
symmetric discrete wavelet-like transform (RS-DWT) where the symmetry refers to

the Fourier domain. One item to note is that I have used the term ‘wavelet-like.’
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FIGURE 5.2. Frequency response of inverse filter for a circular aperture imaging
system (solid line) along (a) either frequency axis and (b) the diagonal. Dotted lines
denote the frequency bands of the mirror wavelet coefficients.

This is because the construction below will not, technically, be a wavelet transform.
Others have developed a precise theory of multi-dimensional, non-separable wave-
let, transforms[64, 65], which lay out the criteria for multi-dimensional wavelets and
discuss how to calculate them. However, the techniques are quite involved and of-
ten iterative in nature. My approach will be to take a simpler practical viewpoint,
attempting to maintain the benefits stemming from a the wavelet transform while
avoiding the complexities of a formal multi-dimensional wavelet transform. How-
ever, since the similarities to true wavelet transforms are quite strong, I will continue
to use terms associated with wavelet transforms, although these must be understood
to be applicable in a loose sense.

Since the 1-D wavelet transform can be described via convolutions with filters,
ho and hq, it can also be described as a multiplication in the Fourier domain. Thus,
the wavelet coefficients can be calculated via a Fourier-domain multiplication, where
the appropriate multiplying mask in the Fourier domain is determined by a Fourier
transform of the filter coefficients, with zero padding as necessary. In general, this
will require a complex representation of the filter frequency response Hp. To allow
use of amplitude only values, the filter must be zero phase (or generalized linear phase

by taking into account the implied shift). Such a constraint on the Fourier transform
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requires symmetric filter coeflicients. The only finite-length symmetric orthogonal
wavelet filter is the Haar basis. In order to allow flexibility beyond the Haar basis
while maintaining amplitude only masks will require the use of biorthogonal wavelets.
Many zero-phase biorthogonal wavelets have been developed, and these will be used.
In order to simplify the discussions initially to enable the concept to be readily
understood, assume use of the Sinc wavelet system[32, p. 60]. The Sinc wavelet filter
is given by
ho (n) = sinc (-;En) (6.1)
for a signal sampled at the Nyquist frequency. This filter is obviously an IIR filter
and thus cannot be implemented in the spatial domain. This example is instructive,
however, as it provides a simple and intuitive introduction of the new concepts. The
Sinc function in the spatial domain corresponds to a Rect function in the Fourier
domain. Thus the implementation of this filter is multiplication with a Rect function
in the Fourier domain. To implement a 1-D DWT we can then use these binary
masks (since Rect is 0 or 1) in the Fourier domain. The extension to a 2-D separable
transform can be accomplished as individual 1-D transforms on the rows/columns.
Alternatively, we can reformulate the individual row/column operations into a
single multiplication in the Fourier domain. If we look at an individual pixel in the
Fourier domain, it will be multiplied by the applicable frequency response from the
row and column filters. We can combine this into a single 2-D multiplication using

the outer product of the filter responses,

W (5: 77) = h, (5) he (7?) (523‘)
oo W = h.hl (5.2b)

where W is the frequency mask, h, and h, are the row/column filters.
It is also important to note that there will be four subbands (LL, LH, HL, HH),
and thus four masks need to be used — each of which can be calculated from the outer

product of the respective low-pass or high-pass Rect functions. The masks for the
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four subbands are shown in figure 5.3, where one is represented by white, and a zero

by black. The wavelet coefficients are given by, for the example of the HH band,
de = f_l {WHH * f{dj.,.l}} (53)

where Wy p is the respective frequency mask. In this way, we can calculate the

complete transform representation.

FIGURE 5.3. The masks used for the (left to right) LL, HL, LH, HH subbands

If T restrict attention to only the undecimated transform, aliasing will not be an
issue. Thus, it is possible to combine the three high-pass subbands (LH, HL, and HH)
into a single band. This yields a single high-pass (wavelet) image and a single low-
pass (scaling) image at each scale. The masks for 3 levels of wavelet decomposition
and the resulting scaling image are shown in the top row of figure 5.4. An example of
this transform applied to Lenna is shown in the bottom row. Note the ringing in the
wavelet images. This is expected due to the nature of the Sinc wavelet — increased
localization in the frequency domain implies lack of localization in the spatial domain.

This method of calculating the DWT yields the undecimated DWT coefficients.
The decimated form may be determined by downsampling the result. Note however,
that the first level of decomposition must be downsampled by a factor of two (in each
dimension) whereas the second must be downsampled by a factor of 4, etc.

This concept of frequency masks can then be extended and used to enforce radial
symmetry in frequency space. For each point in the frequency domain, we can cal-

culate the radial frequency (p = /w2 + w?), and assign to that point the frequency
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FiGURE 5.4. Top row is the first three wavelet masks and the resulting scaling
function frequency mask for the sinc wavelet. Bottom row shows the corresponding
wavelet /scaling images.

response of a 1-D wavelet at the given frequency. This will enforce a radially sym-
metric filter. One issue is that a 1-D filter will have a filter response out to w = 7.
With a rectangular sampling grid, radial frequencies out to w = V271 will be present

in the ‘corners’ of the Fourier domain representation. This issue can be addressed in

several ways:
e Assigning all pixels with w > 7 to be the value at w = 7.

e Using a first decomposition scale to represent the data in the ‘corners’ by re-

moving all frequencies w > .

e Assume periodic replication and fold the frequency response of the filter around

W = T.

Since we are assuming a critically sampled circular aperture system, there is no in-
formation content above w = w. Thus, the third option is not preferable as it would

introduce noise artifacts from frequencies above the diffraction cut-off into the high-
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and low-pass bands. The first and second options make the most sense. The second
option will be used when not otherwise noted, although little significant difference
was noted in performance between the first two. The first option simply adds a small
amount of additional noise into highest wavelet subband, since critical sampling is
assumed. The second option is equivalent to multiplication in the Fourier domain
with a large circ function, which is equivalently a convolution with a small Bessel-like
PSF.

If we use the same 1-D Sinc-wavelet transform, the 2-D RS-DWT corresponds
to a Circ function in the Fourier domain or loosely speaking, a 2-D jinc-function
wavelet. Following the above approach, we use binary masks in the Fourier domain
as shown in the top row of figure 5.5. FEach successive scale is a dyadic frequency
band. An example of the resulting transform is shown in the bottom row of figure
5.5. Note that the first scale contains only the ‘corner’ data discussed above. A loose
interpretation of this transform is that it approximates an undecimated DWT using
jinc-function wavelets, whose radial symmetry is similar to that of circular aperture
imaging systems.

Note that due to the combination of the high-pass bands and the radial symmetry,
there is not a way to express this transform in a decimated form. The low-pass
subband in the binary mask case could be decimated by a factor of two in each
dimension, without concern about aliasing. However, any FIR wavelet will not be
perfectly band-limited below w = %, and thus aliasing will occur in downsampling.
This aliasing will not be canceled by reconstruction since only the low-pass band
was downsampled. The high-pass band cannot be downsampled without loss of
information (it contains the rough equivalent of the HL, LH, and HH subbands).

While the above cases demonstrate the use of Fourier masks, the ringing in the
transform data (due to the Sinc’s frequency response) is not desirable. In fact, many
of the benefits of wavelet transforms stem from the spatial locality of the transform.

However, it is a simple extension of the above techniques to use any FIR wavelet. The
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FIGURE 5.5. Top row is the first three wavelet masks and the resulting scaling func-
tion frequency mask. Bottom row shows the corresponding wavelet/scaling images.

concept is to use the frequency response of a 1-D wavelet filter to generate ‘gray-level’
masks. One additional complicating factor not necessary to include above (due to
the binary nature) will be that since undecimated transforms are assumed, the filters
must be upsampled. This will lead to periodic lobes in the frequency response masks
due to the periodic replication of the filter response. This was previously shown in
section 3.5 and the impact discussed there.

The main-lobe only masks when biorthogonal 9/7 wavelet filters are used are
shown in the top row figure 5.6. These show where the majority of the energy in a
subband will be located. The next row shows the actual masks used that include the
periodic lobes from the filter upsampling. The last row shows the wavelet and scaling
coefficient images. Note that the ringing artifacts are not present, as expected, while
a radial frequency symmetry and perfect reconstruction is maintained. Any 1-D plot
through the center of the Fourier domain masks will be identical to the 1-D frequency
response of the wavelet used.

The question remains as to what extent does this transform capture the critical
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FIGURE 5.6. Top row is the first three wavelet masks and the resulting scaling
function frequency mask for the bi-orthogonal 9/7 wavelet pair. Middle row shows
the same masks with applicable periodic lobes. Bottom row shows the corresponding

wavelet /scaling images.

properties of the DWT. In order to provide an answer, I will provide an intuitive

argument based on the transform itself demonstrating how it meets the properties

listed in section 3.4.

P1: Locality: Since the transform is a multiplication in the Fourier domain, we can
calculate an equivalent convolution kernel in the spatial domain and examine its
spatial extent. As shown in figure 5.7, there is a sharp decay in the magnitude
of the kernel away from the origin. In the figure, a 1-D slice through the center

of the 2-D high-pass kernel is shown in both linear and semi-log formats. Note
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that the amplitude is shown on top, while the logarithm of the magnitude is
shown below. There is a sharp drop-off of 4-5 orders of magnitude within 8
pixels of the center, whereas the 1-D wavelet used is the biorthogonal 9/7 pair,
with length 7 for the initial high-pass. Over 99% of the energy in the 2-D
RS-DWT filter is concentrated in the area within 8 pixels of the center.

Multiresolution: The transform images provide insight into images properties

P3:

across a set of scales. This is obvious from both the designed frequency response
of the transform and the resultant set of transform images (e.g. figure 5.6, last

row).

Sparse Representation: In order to determine sparsity of the transform, I will

use two metrics: 1) a plot of the percentage of the total transform energy
represented in a set percentage of the coeflicients, and 2) estimated probability
density functions. The top plot of figure 5.8 shows the first metric. The solid
line shows the result for the RS-DWT while the dotted line is the undecimated
DWT. The results are almost identical. The bottom two plots show a histogram
of the wavelet coefficients and the best fit to a GGD distribution. The middle
one is the RS-DWT, while the lower is the undecimated DWT. The results
are very similar, with low relative entropy between the two. For comparison,
figure 5.9 shows the same type of plots as in figure 5.8, but now compares the
RS-DWT with an ideal band-pass (rect function filter) image covering the same
frequency band. Note the differences between the two, not only in the top plot,
but especially the change in GGD exponent (shape parameter) and increase in
relative entropy. Thus, the RS-DWT does a comparable job to an undecimated
DWT at sparsely representing the data. Similar results were noted with a range

on natural imagery.

P4: Decorrelation: The RS-DWT maintains the approximate decorrelation of coef-
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ficients as seen in the undecimated DWT. Figure 5.10 plots the correlation co-
efficient versus pixel separation for both the RS-DWT and undecimated DWT.
The results are extremely similar, lending support to the near decorrelation of

coefficients.

5.4 Modified mirror wavelet basis

Using the above transform as the beginning, we can extend to a mirror wavelet
packet basis while maintaining radial symmetry. Due to the RS-DWT, each de-
composition level yields a single high-pass and a single low-pass band which can be
further decomposed as desired. A graphical outline of the transform used is shown in
figure 5.11 where the biorthogonal wavelet filters used are hy and go for the low-pass
filter and h; and g; for the high-pass filters. Several notes on the implementation

are necessary.

e At each scale, the filter is modified by the insertion of (J —1 — scale) zeros

between each filter coefficient (upsampling).

e The low-pass and high-pass filters are swapped at every other scale in the trans-
form for the mirror packet coefficients. This is a direct result of the upsampling.
hg, when upsampled by a factor of 2 (one zero between each coefficient) will
have the primary band-pass of interest at 3{ < w, < m, which is actually a

high-pass for the scale J — 1 high-pass output.

o At each level, the 2-D Fourier mask used is derived from the 1-D frequency
response of the respective filter using the radial symmetry method discussed

above.
e The inverse transform is calculated as expected, using h; and go for the filters.

e This is a perfect reconstruction (PR) filtering operation.




90

08

0.6

0.4

0.2

-0.2

)
80 100

120

I
140 160 180

10°

10

10

10°

100

120

140 160 180

FIGURE 5.7. 1-D plot across 2-D kernal of HH band (top) and log plot to show decay
(bottom). The x-axis is pixels, while the y-axis is relative amplitude.
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FIGURE 5.8. Plots for measurement of sparsity of transform representations compar-

ing RS-DWT and undecimated DWT. In top plot RS-DWT is solid and undecimated

DWT is dotted.
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FIGURE 5.9. Plots for measurement of sparsity of transform representations com-
paring RS-DWT and ideal band-pass image of same frequency band. In top plot
RS-DWT is solid.
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FIGURE 5.10. Correlation coefficient of wavelet coefficients for RS-DWT (solid line)
and undecimated DWT (dotted line) plotted vs. pixel separation. For comparison,
the correlation of a white Gaussian noise image is shown as a dashed line.
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The first two notes discussed above are the result of implementing the algorithm
a trous. The resulting frequency plot in 2-D (positive frequencies quadrant) is shown

in figure 5.12. As desired, the singularity in the inverse filter of a critically sampled

imaging system is now isolated by the mirror packet subbands.
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FicURrE 5.11. Graphical algorithm for calculating the RS-DWT mirror basis trans-

form.

5.5 Discussion of Image Restoration Algorithm

5.5.1 Algorithm overview

This section will provide an overview of the proposed algorithm, with subsequent

sections further discussing the details.
To compute the simulated input image, an image is blurred using a critically

sampled circular aperture OTF (diffraction cut-off at p = |/w? + w2 = 7) and AWGN

of a given variance is added. The degraded image is the only input (other than
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FIGURE 5.12. Frequency plot of the subbands in a RS-DWT mirror basis. Note that
only positive frequency quadrant is shown.

knowledge of the blurring function) to the restoration algorithm. The first step is to
estimate the noise variance and form a new image consisting only of white Gaussian
noise of the estimated variance. After this, both the input data and the noise
image are inverse filtered with the blurring operator and forward transformed using
the RS-DWT. From the noise only image an estimate of the subband dependent
noise variance is computed. Using these values, the transformed input image is then
denoised, either via soft thresholding or a Wiener filtering of the wavelet coefficients.

An inverse RS-DWT will then yield the result. Figure 5.13 outlines the process.

5.5.2 Noise variance estimation

The key element of the algorithm is denoising of the data in the RS-DWT domain.
Thus, a thorough understanding of the noise properties in this domain is required,
particularly the variance as it is used to set the threshold for denoising. First, an
accurate estimation of the AWGN present in the original image is necessary. Since an

orthogonal transform does not change the noise properties, the highest scale subband
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FIGURE 5.13. Algorithm overview for RS-DWT based deconvolution.

in an orthogonal DWT will have the same noise variance as the original data. Using

the median estimator (o = Z&&t) on these DWT coefficients, the result is within

a few percent for most natural images. The key is that natural images have less
signal energy in the higher frequencies, allowing better estimation of the noise using
the median. By using an undecimated, separable mirror-packet transform which
isolates the highest frequencies, I have been able to reduce the error to below a
percent. Using the variance estimated by this method has no noticeable change in
deconvolution performance than using the actual value.

Next, an estimate of the noise in RS-DWT domain after inverse filtering is re-
quired. This is the image that must be denoised to arrive at the restored image.
Even though the input image has AWGN, the inverse blurring operation will signifi-
cantly color the noise. Additionally, the RS-DWT (a non-orthogonal transform) will
also tend to color the noise further. While both of these ‘coloring’ effects are deter-
ministic in nature, I estimate the noise variance in a given subband directly. However,

this cannot reliably be accomplished in the presence of the signal. The concept im-
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plemented is to form a noise only image with white Gaussian noise of the estimated
variance. Inverse filtering and transforming this image to the RS-DWT domain will
yield a noise spectrum which is representative of that in the transformed input image.
Using the median estimator once again yields an estimate of the subband dependent

noise variance, o2 for scale j.

jynotse?

5.5.3 Denoising approach

Two denoising approaches were used. In the first case, 0 pnoise can be used to
calculate a threshold to denoise the data. While a constant multiplier to the standard
deviation was used to start, it was noted that the error images (image formed as the
difference between the true and restored image) had significant energy in the higher
frequencies. If the threshold was increased to diminish this noise, low frequency
errors were introduced. Thus an adaptive multiplier was used, one that increased
with the inverse filter frequency response. The rationale can be understood by
looking at the impact of the threshold in a deconvolution-type denoising. For simple
AWGN denoising, the cost (in restored image degradation) of not thresholding a
coefficient ‘mostly’ due to noise is constant in each subband — a result of Parseval’s
equality for the orthogonal case. For the biorthogonal case, it is still approximately
true with the approximation better for tighter frames. However, when an inverse
filter is involved, the cost changes. For high frequencies, the inverse filter frequency
response will be large. Thus, if noise is passed through the soft-thresholding, it will
be significantly amplified noise. Thus, at higher frequencies we want to be more
robust and threshold out more of the noise, possibly at the expense of some signal
energy, to prevent large noise in our reconstruction. However, the lower subbands
can tolerate a lower threshold that might allow more of the noise through, but also
more of the signal energy.

The second approach is to Wiener filter the wavelet coefficients. Note that this
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is not a Wiener-Helstrom deconvolution, but simply a denoising of the wavelet coef-
ficients in an MSE optimal sense, assuming Gaussian noise. In general this is given

by:

8%,
7 — b
dj,k o <6?,k + O'%) dj,k (54&)
1
= | — | dix (5.4b)
14+ 2~
3.k

where 6, is the true wavelet coefficient of the object, d; is the wavelet coeflicient
of the transformed data, and cij,k is the new estimate. In fact, it was shown[66] that
hard thresholding can be interpreted as a Wiener filter for an extreme model of 6

given by

_ oo, dikl>T
Oik = { 0, else (5.5)

While this is the MSE optimal denoising solution, it requires a model for the co-
efficients we are trying to estimate, the 6,;z. The solution is to restore the image
using soft-thresholding as discussed above. This restored image can then be used as
the estimate of the coefficients in a second (and different) wavelet basis, as shown in
figure 5.14. This approach did improve results, but tended to over-smooth the result,

leading me to regularize the Wiener filtering

A 1
djr = | === | dj (5.6)
1 + Odgr
3.k

where the o term reduces the amount of ‘smoothing’ performed by the filter.

5.5.4 Wavelet basis

The last algorithm detail to be discussed is the choice of RS-DWT mirror packet
basis. First is choice of the 1-D wavelet family. For the results shown below, the 9/7
biorthogonal filter pair[67] and the Cohen-Daubechies-Feauveau (CDF)[68] family of
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FIGURE 5.14. Wiener filter denoising algorithm

filter pairs were used. These were chosen as they have been shown to perform image
compression well for a wide class of imagery. Next, the level of decomposition is
required. It is theoretically possible to decompose an n x n image into logan levels.
However, this is not necessarily the optimal choice for a particular application, either
in terms of performance or computationally.

For standard denoising applications, multiple levels of DW'T decomposition are
used to provide separation of the low-pass (scaling coefficients) from the wavelet
coefficients. This is necessary as the scaling coefficient data is not denoised. Thus
it is important to transform to a level at which the scaling coefficient data is fairly
reliable estimate of the true data. Since the scaling data is the result of multiple
low-pass filters, the noise tends to be smoothed out after multiple levels. I haven’t
found any formal study on performance vs. number of levels of decomposition, but
typically at least 4-5 transform levels are used.

For the current work, the mirror packet transform used is shown in figure 5.12,
where both the high and low frequencies were decomposed 4 times. While not neces-
sarily optimized, further decomposition did not noticeably improve performance for
the class of images tested, while computational speed dropped quickly. An additional
aspect to consider is that due to the growth in inverse filter, at a certain frequency, all

object information will be obscured by noise. This point is dependent on the noise
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in the image, but also points out that further decomposition (at the high frequencies)

will not necessarily improve performance.

5.6 Results

As a baseline, all results refer to images which are scaled in 0 - 255. For display
below, I used the Lenna and Urban image shown in figure 5.15. For comparison
purposes, the results will be compared with Wiener filtering. Two different Wiener
filters will be used. The first will be what I'll call a fair Wiener filter, meaning
the input to the Wiener filter will be only the degraded image and knowledge of
the blurring function. When possible, I'll use the iterative signal PSD estimation
discussed above, as implemented in [69]. I will also present the results for an ‘unfair’
Wiener filter which will be given perfect knowledge of the signal and noise PSD.
This is given for comparison purposes as it is the MSE optimal solution for an LSI
restoration under AWGN. This is unfair knowledge since the exact signal PSD is
never known in practice. All of the results for the RS-DWT algorithm use only the
degraded image and blurring operator as a priori knowledge.

The proposed algorithm was used to restore a degraded Lenna image with 0peise =
1. The results on part of the image, enlarged to show detail, are shown in figure
5.16. The top row, (a) and (b), show the original and degraded image. (c) and (e)
are the results of the fair and unfair Wiener filtering, respectively. (d) is the result of
the RS-DWT using soft-thresholding; (f) is the result when wavelet domain Wiener
filtering is'added. Notice that all four of the restorations do a decent job of restoring
the image details. However, the Wiener filter results show more noise remaining in
the smooth areas of the imagery, notably the face. Even the unfair Wiener filter
is less smooth than the RS-DWT results. This is typical of results here and in
other wavelet domain restoration attempts - the wavelet domain retains the ability

to capture sharp transitions and smooth areas, while the Wiener filter, in order to
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(b)

FIGURE 5.15. Images used in restoration. (a) is Lenna, (b) is Urban.

capture sharp edges usually leaves a noisy look in smooth areas. The results in terms
of ISNR are shown in table 5.1. Note that the ISNR values are based on the whole
image, not just the enlarged part displayed in the figures. In this case, the RS-DWT
actually outperforms the unfair Wiener filter in terms of ISNR by about a third of
a dB. For results observed across multiple images, it was noticed that while ISNR
for the unfair Wiener filter and RS-DW'T deconvolution were comparable. Note that
the images were individually scaled for display.

Next the algorithms are used on the Urban image, with 0poise = 1 again. The
results shown in figure 5.17 are similar to that for the Lenna image above. The details,
such as aircraft on the ramp were reconstructed fairly well by both algorithms, but
the RS-DWT was noticeably smoother in smooth areas of the image. Figure 5.18
shows another section of the same image and restorations. Notice the road near the
top and the wire across the water are restored, but again the RS-DWT result is much
smoother. Figure 5.19 displays a 1-D horizontal plot near the bottom of the image

across the water. The plots, which are offset from one another for visibility are,




100

from bottom to top, the original image, the degraded image, the fair WF estimate,
the unfair WF estimate, and the RS-DWT estimate. Again, this demonstrates the
ability to reconstruct sharp transitions, such as around pixels 170 or 450, while also
keeping smooth areas, such as the water between roughly pixels 200 and 400. The
ISNR is over 2 dB better than the fair WF case, and about a third of a dB lower
than the unfair Wiener filter results.

The next set of results are for the Urban image with more noise, Opnoise = 4.
Figures 5.20 and 5.21 show the results for similar sections of the images as before.
Once again, the RS-DWT tends to be smoother in the smooth regions, although
there are artifacts that are starting to appear in the RS-DWT results as well. These
artifacts are due to noise coefficients that have not been thresholded, which results

in an artifact of the wavelet kernal in the restored image.

Noisy Wiener Wiener RS-DWT RS-DWT

Image (fair) (unfair) (soft-thresh) (wavelet WF)
Image SNR ISNR ISNR ISNR ISNR
ennd | 3062 | 537 6.45 6.26 6.78
whet | ase6 | 2.85 5.82 5.04 5.47
whe | 2401 | 036 2.63 1.87 2.06

TABLE 5.1. RS-DWT deconvolution results

The results above are based on using the 9/7 biorthogonal wavelets for threshold
denoising, and the CDF 13/5 wavelets for Wiener denoising. Results were similar
when either the 9/7 or CDF wavelets were used. However, there was a performance
difference noted depending on which filter of the biorthogonal pair was used as the
Around a third of a dB improvement was seen when the

low-pass synthesis filter.

low-pass synthesis filter was the longer of the two.
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5.7 Relationship to Curvelet Transforms

Recently, Candes and Donoho have introduced curvelets as a transform to repre-
sent 2-D images that are smooth except for edges which are smooth curves[70]. In
[71], Do and Vetterli show that a pyramidal directional filter bank (PDFB) yields a
curvelet-like transform. A PDFB is a transform made up a directional filter bank, as
designed in [72], with the addition of a multiscale decomposition. Graphically, this
is demonstrated in figure 5.22 which shows the directional and multiscale decomposi-
tions separately in (a) and (b), and the combined transform in (c). In practice, they
are implemented independently — the high-pass output of the multiscale transform is
further transformed by the directional filter bank. When the number of directions in
the directional decomposition is doubled at every other scale, the transform satisfies
several key properties of the curvelet transform.

Do and Vetterli rely on the Laplacian Pyramid to perform the multiscale decom-
position, due to the fact that it provides a single high-pass and single low-pass output
from a 2-D transform, as opposed to the 4 subbands from a separable DWT. Using
this transform, much more detail is retained in denoising of imagery than by wavelets
alone. The RS-DWT above is also another way to achieve the single high/low-pass
output, and would be a natural candidate for the multi-scale decomposition. This is
especially true for problems where the radial symmetry is important, such as in col-
ored noise or deconvolution. It is also reasonable to expect the wavelet-like properties

of the RS-DWT to improve performance over a Laplacian Pyramid.
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FIGURE 5.16. Restoration results. Enlarged section of image to show detail. (a)
is original, (b) is degraded image (SNR 30.62), (c) results of fair WF' (ISNR 5.37),
(d) results using RS-DWT (ISNR 6.26), (e) results of the unfair WF (ISNR 6.45), (f)
results using RS-DWT with wavelet domain WF (ISNR 6.78).
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FIGURE 5.17. Restoration results. Enlarged section of image to show detail. (a)
is original, (b) is degraded image (SNR 25.66), (c) results of fair WF (ISNR 2.85),
(d) results using RS-DWT (ISNR 5.04), (e) results of the unfair WE (ISNR 5.82), (f)
results using RS-DWT with wavelet domain WE (ISNR 5.04).
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(e) (£)

FIGURE 5.18. Restoration results. Enlarged section of image to show detail. (a)
is original, (b) is degraded image (SNR 25.66), (c) results of fair WE' (ISNR 2.85),
(d) results using RS-DWT (ISNR 5.04), (e) results of the unfair WF (ISNR 5.82), (f)
results using RS-DWT with wavelet domain WE (ISNR 5.04).




105

I )
50 100 150 200 250 300 350 400 450 500

FIGURE 5.19. 1-D horizontal plots near the bottom (row 410 of 512) of the Urban
image. The plots are offset from one another for visibility. From bottom to top,
they are the original image, the degraded image, the fair WF' estimate, the unfair
WF estimate, and the RS-DWT estimate.
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FIGURE 5.20. Restoration results. Enlarged section of image to show detail. (a)
is original, (b) is degraded image (SNR 24.91), (c) results of fair WF (ISNR -0.36),
(d) results using RS-DWT (ISNR 1.87), (e) results of the unfair WF (ISNR 2.63), (f)
results using RS-DWT with wavelet domain WF (ISNR 2.06).
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(e) (£)

FIGURE 5.21. Restoration results. Enlarged section of image to show detail. (a)
is original, (b) is degraded image (SNR 24.91), (c) results of fair WF (ISNR -0.36),
(d) results using RS-DWT (ISNR 1.87), (e) results of the unfair WF (ISNR 2.63), (f)
results using RS-DWT with wavelet domain WF (ISNR 2.06).
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FIGURE 5.22. Frequency domain representations of (a) the directional filter bank,
(b) a multiscale decomposition, (¢) the PDFB with number of directions doubling at

every other scale
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CHAPTER 6
SUPER-RESOLUTION METHODS

6.1 Overview of Wavelets and Super-resolution

As implemented in the wavelet domain, super-resolution is fairly straightforward
to describe: the determination of the next finest scale subband coefficients. I assume
that the given image (which could be the result of deconvolution as discussed in the
previous chapter) is an accurate representation of the scale J coefficients and the goal
is to reconstruct an approximation of the scale J +1 coeflicients (EE, I-/ITJ, and HH ).
Use of a single scale inverse DWT will yield a new image estimate, g, as outlined in

figure 6.1 for the case for a decimated separable transform.

Subband
Estimation

Input image, g —> 1o . Ig;;r;e 5
fil | A

FIGURE 6.1. Overview of super-resolution process in the wavelet domain.

However, it is also possible to use an undecimated DWT or the RS-DWT. The
three options are shown in figure 6.2. Use of a decimated DWT will require estimation
of three n x n (decimated) scale J subbands. Use of a RS-DWT would require
estimation of a single 2n x 2n scale J subband while an undecimated, separable
DWT would require estimation of three 2n x 2n scale J subbands. The best choice
is not clear a priori. Also note that the RS-DW'T and undecimated DWT require

the use of upsampled image data.
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FIGURE 6.2. Three methods of wavelet based super-resolution: (a) uses the standard
decimated DWT, (b) the undecimated transform, and (c) the RS-DWT.

As previously discussed, the two major aspects that are involved in successful
super-resolution algorithms are a priori knowledge and non-linear/spatially varying
techniques. Looking at a priori knowledge that may be useful for wavelet based super-
resolution, positivity of the image is still a reasonable requirement. However, limited
spatial extent is not of much use, a significant difference from previous techniques.
This is due to the non-localized nature of the Fourier transform — spatial limitations in
the image domain will cause expansion in the Fourier domain. However, the localized
nature of the wavelet domain is inherently different and limited spatial extent implies
zeros in the wavelet subbands, but this has only a local influence. One piece of a
priori information is the known wavelet transform of the data. This can be used in
predicting the estimated subbands in a statistical sense since we know DWT's generally
maintain exponential decay across scales for edges and persistence of magnitude in

general. Thus, the major piece of a priori information to take advantage of in the
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wavelet domain is the nature of a DWT and the statistics of the known scales.

Looking at possible non-linear or spatially varying attributes that may be useful,
we know that the decimated DWT is spatially varying. However, this is of little
help in super-resolution as it is a result downsampling which decreases the frequency
content, rather than the desired increase. In fact, the spatially invariant undecimated
DWT has several advantages, notably the redundancy it supplies. The addition of
new subband data beyond the original image is a spatially varying technique, and the
main methodology used to achieve super-resolution.

As a first step towards wavelet based super-resolution, the next section discusses
several initial experiments that were performed to quantify the possibility of super-
resolution in the wavelet domain and to discuss the impact of the wavelet properties
of sparsity, exponential decay, and persistence. This also includes discussion on
possibility of using these for super-resolving imagery. The last section discusses the

use of Vector Quantization to achieve super-resolution.

6.2 Feasibility Experiments

As a first step, I will discuss some simple experiments performed to determine
the feasibility of achieving ‘meaningful’ bandwidth extrapolation of imagery. These
are meant to look at the wavelet properties and how to use them in super-resolution
algorithms. As basic set-up, I have used the standard images, Lenna, Urban, and
Mandrill as shown in figure 6.3. In the simulation, I perform a band-limited down-
sampling of the original image and use this as the input. The band-limiting is
assumed to be an ideal low-pass filter in the frequency domain unless otherwise noted.
In the experiments discussed here, I have used some knowledge of the original image
in the restoration - i.e. assuming some knowledge that would be lost due to frequency
band-limits in a real-world case. This is to simplify the experiments and determine

the upper-bound on expected performance.
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FIGURE 6.3. Images used in these experiments

As a measure of super-resolution performance, I will use spectral correlation co-
efficient (CC) images discussed in section 2.4.

In order to super-resolve, the estimated wavelet coeflicient location and amplitude
must be determined. First I will demonstrate the impact of sparsity - that knowing
only a few coefficients provides significant super-resolution performance. Next I in-
vestigate the ability to predict the magnitude of the estimated coefficients. Then, I'll
look at determining the location of these significant coefficients from known transform

data.

6.2.1 Sparsity

The first set of experiments demonstrate the ability of wavelet based processing to
perform significant super-resolution given imperfect knowledge of only very few of the
estimated wavelet coefficients. This can be expected based on the sparsity property of
the wavelet transform — since the energy is concentrated in few coefficients, knowledge
of only those few coefficients can restore a significant amount of the information
content.

For the experiments discussed below, I will downsample the original image by first
applying a perfect low-pass filter in the frequency domain and then downsample by
a factor of 2. I will then attempt to upsample this image back to the original size

using 3 different techniques. First is Sinc Interpolation, which is upsampling via zero
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insertion and applying a perfect low-pass filter. The second is wavelet interpolation:
adding additional subbands with values of zero and then inverse transforming. The
third is a wavelet algorithm that will add the additional subbands, but fill them with
coefficients based on some knowledge of the true coefficients. For now, the assumption
of perfect knowledge of location and sign will be made, but the magnitude will be
varied. In the plots below, the magnitude will either by dithered from the true value
by a random perturbation (AWGN, ¢ = 20% of magnitude) or simply use a single
value for all of them, which was chosen as the mean of all significant coefficients.
Additionally, I will calculate the frequency correlation coefficient image of the image
estimate with the original as a measure of the meaningfulness of the interpolation. I
will also show the the average for all frequencies beyond the assumed system cut-off.
Unless otherwise noted, the biorthogonal 9/7 wavelet system is used.

Figure 6.4 shows the results for the Lenna image, where 10% of the coefficients
are retained. On the far left is a magnified portion of the original image to increase
visibility of results. The next two columns are the interpolated images and the
correlation images from the three techniques discussed above, with the mean of the
CC image outside the original bandpass noted in the image title. As is obvious from
examining the wavelet algorithm image and correlation image, significant ‘super-
resolution’ has occurred. Note that neither the Sinc or wavelet interpolation yield
any meaningful frequency content above the band-limit (the horizontal and vertical
lines in the interpolated correlation images are due to edge effects). The box in each
of the CC images denotes the band-limit of the downsampled image. Figure 6.5 shows
the results for only 1% of the coefficients in the new subbands. While performance
does decrease, there is still significant meaningful frequency content above the cut-off.

To further understand performance over a variety of cases, the average correlation
coefficient (outside the band-limit) can be plotted vs. the percentage of coefficients
included. This is shown in figure 6.6 for three cases of what magnitude was used:

actual magnitudes (solid), random perturbation (dashed), and mean value (dotted).
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Original Wavelet Algorithm CC mean: 0.737

Wavelet Interpolation CC mean: 0.182

Sinc Interpolation: CC mean: 0.141

FIGURE 6.4. Interpolation results for 10% of coeflicients and random perturbations
on the wavelet coefficients.

For all three cases, the correlation average rises fairly quickly as coeflicient percentage
is increased, and then evens out. For very low percentages, the results are similar, but
eventually the actual magnitudes wins out (as expected), but the random perturbation
on the magnitudes does not have a large effect. The mean-value case approaches a
maximum around 9-10% and then drops due to the fact that as more coefficients are
averaged, the mean is decreasing in value. Almost identical results are also achieved
using the RS-DWT discussed in the previous chapter. Figure 6.7 shows the results

for each of the three images with random perturbation on the coefficient magnitudes.




115

Original Wavelet Algorithm CC mean: 0431

Wavelet Interpolation CC mean: 0.182

Sinc Interpolation: CC mean: 0.141

FIGURE 6.5. Interpolation results for 1% of the coefficients and random perturbations
on the wavelet coefficients.

The same general form is seen in all three cases. One note is that the correlation
does not go to zero. In fact, even the correlation of two independent white noise
images will not be zero, but will depend on the correlation neighborhood size (k in
equation 2.30) used. For k = 3, the default used, the value will be about 0.128.
The primary conclusion from these experiments is that a significant amount of

super-resolution is possible from knowledge of only a few coeflicients.
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FIGURE 6.6. Plot of average correlation coefficient vs. percentage of coefficients
included for the use of actual magnitudes (solid), random perturbation (dashed), and
mean value (dotted).

6.2.2 Magnitude Extrapolation

The next set of experiments evaluated the ability to predict the mean value of
the extrapolated subband based on data from the downsampled image DWT. As
discussed above, there is a nearly exponential decay of the coefficients across scales
for images dominated by edges. In practice, this holds true for the large coefficients
in most natural imagery as they tend to represent edge content. Figure 6.8 shows the
result of predicting the mean of the 1% most significant coefficients from the mean
of the 1% most significant coefficients in the subbands of the downsampled imagery.
From left to right, the columns are the HL,, HH, and then LH bands. From top to
bottom, they are the results from Lenna, Urban, and then Mandrill. Note that the
plots show the linear fit line (semilog scale is used, thus exponential relationship is
linear) along with the downsampled means (circles) of the known data and the true
value (x’s) of the to be estimated subbands. The title on each shows the percentage
error between prediction and actual values. The next figure is the results, shown in
the same format as the previous section, when the predicted magnitude is used for all

1% of the most significant coefficients. The location and sign of the coefficients was
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FIGURE 6.7. Correlation averages for Lenna (solid), Urban (dotted) and Mandrill
(dashed) given random perturbation of the magnitudes.

assumed known. Note that even this imperfect knowledge of magnitude still yields

meaningful bandwidth extrapolation.

6.2.3 Determination of Significance

The last major experiment in the feasibility of wavelet based super-resolution was
looking at the ability to know which of the extrapolated subband coefficients are
significant. The input we have in this determination is the significance of the lower
resolution subbands. It is reasonable to expect some correlation in this significance,
especially given the persistence property of the wavelet transform. To correlate
the magnitudes across scales a further discussion on parent/child relationships is
necessary.

In the typical, decimated wavelet transform, the meaning of parent and child is
well defined, with each parent having four children for a 2-D image, as shown in figure
6.10. However, as discussed previously, the undecimated transform yields benefits
stemming from shift invariance and redundancy. Since each of the subbands in an
undecimated DWT is the same size, it seems reasonable that each coefficient should

be assigned a single child — the coefficient located in the identical position and the
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FIGURE 6.8. Results of predicting new subband magnitude from exponential decay.
Left to right are LH, HL, HH subbands. Top to bottom are Lena, Urban, and Mandrill
images.

next finer scale. While accurate to assign the more detailed coeflicients as children,
it is not a complete view of the children of any coefficient.

To understand the relationships in an undecimated transform, we need to look
more closely at how the coefficients are calculated. In order to simplify the discussion,
a 1-D example will be shown, based on the Haar wavelet (simple difference of adjoining
coefficients are the wavelet coefficients). The results, however are identical for any
finite wavelet and are extendable to 2-D in the typical separable manner — i.e. a
coefficient has children in the horizontal and vertical directions. Figure 6.11(a) shows
a single scale decomposition. The next scale (coarser) decimated wavelet coefficients
are calculated based on two adjoining coefficients. In 6.11(b), we extend this to the
undecimated transform. We see the results are the same as the decimated case (solid

lines) with additional coefficients interspersed in every other position (dotted lines).
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Original Wavelet Algorithm CC mean: 0442

*,

Wavelet Interpolation CC mean: 0.182

Sinc Interpolation: CC mean: 0.141

FIGURE 6.9. Results of wavelet super-resolution algorithm using known location, but
predicted magnitude of 1% of the coeflicients.

However, the parentage is now not as clear: the ‘b’ coeflicient derives not only from
‘a—1>b,” but also ‘b —c.” This is understood from viewing the undecimated transform
as a compilation of the decimated transform for all applicable shifts (section 3.5). In
6.11(b), the solid and dashed lines are the results for no shift and a single pixel shift.
Obviously, this is the only applicable shift, as a shift of 2 pixels will only replicate
the zero-shift result (albeit shifted by one pixel). Thus, each pixel has two parents,
just as each parent has two children.

This result can then be extended to a two-scale decomposition as shown in figure
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FIGURE 6.10. Parent-child relationship in a 2-D DWT
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FIGURE 6.11. Parent-Child relationships for a 1-D signal for (a) Decimated and (b)
Undecimated DWTs.
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6.12. At the first level of decomposition, we have the results as above, and at the
second level, we again calculate differences. However, since the filter must be upsam-
pled, it is no longer differences of adjoining coefficients. Thus the first undecimated
coefficient (‘(a — b) — (¢ — d)’) is parent to the first and third at the next finest scale
(‘a — b and ‘c — d’). It also has four grandchildren: the first four coefficients at
the finest scale. Each finest scale coefficient will also have four grandparents. Thus
there is a n-to-n relationship between the scales, but not necessarily always between

adjoining coefficients.

Level Scale

0 J

FIGURE 6.12. Parent-Child relationships for a 1-D signal for an Undecimated DWT.

The key result is that while there is a parent-child relationship for pixels in identi-
cal locations, this is only part of the relationships that exist is the undecimated form.
In order to follow the ‘family’ relationships, the above map must be used.

To quantify the ability to predict the significant coefficients in the next scale, I will

use the following two definitions which are based on the parent/child relationship.

e Successful spawning rate (SSR): The percentage of significant coefficients at

one scale that have at least one of their children being significant.
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e Legitimacy rate (LR): The percentage of significant children with significant

parents.

These are in some sense, complements of each other in that SSR measures the
forward dependence of significance (is significance passed on), while LR measures the
backward dependence (was significance inherited). A large SSR implies that the
majority of significant coefficients pass on significance. A large LR implies that
most of the significant coefficients will be found by searching only the children of
significant parents. Obviously, we would like both to be high.

While the definitions appear similar, there is an important distinction. As an
example, we can achieve a SSR of 100% if we use a threshold such that only a single
coefficient is significant and it has a significant child. While achieving this perfect
SSR, we will only restore 1 significant child. Thus, LR is complementary in the
sense that it measures how many coefficients we can find by looking only at children
of significant parents. In the above example, we would only find a single significant
location — a very low LR. Remember that for super-resolution we want to use the
data from scales up to J to predict a new J+ 1% scale. These quantities measure our
ability to predict the locations of the most significant of the J + 1% scale coefficients.

It is possible to set the significance levels at different levels for different scales, e.g.
we can use a 10% threshold at scale J, and a 5% threshold at scale J+1. Intuitively,
this will increase the LR, since we have more possible parents for the children, how-
ever, it should decrease the SSR since we are adding more parents without adding
more children. This can lead to an optimization problem: At what level do we set
the thresholds for scale J such that the SSR and LR are optimal for predicting the
locations of a given percentage of the most significant coefficients at scale J + 17

The results discussed below are based on calculating the DWT of a given image,
determining binary significance maps based on the (scale dependent) threshold, and

then calculating SSR and LR for prediction of the (known) highest scale significance
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data from the next highest scale data. In addition to the same 3 images used
before, I have also used a synthetic test image show in figure 6.13. The reason for
this is that wavelets (meeting certain smoothness criteria) will yield a DWT that
decays exponentially across the scales for step edges. This regularity in the DWT
coefficients, will be higher for the test image than real imagery due to the exact step

edges. Thus, the test image should hint at an upper-bound in performance.

FIGURE 6.13. Test image used in experiments

The results are shown in figures 6.14 and 6.15. Both of these plot the calculated
SSR and LR for the four images, using a significant percentage for the J** scale
(parents) of 10% significance for figure 6.14, and 5% in figure 6.15. The x-axis then
shows the significance threshold (in terms of percent) of the J + 1% scale (children)
that was used, varying from .01 to .30 (1% to 30%). As expected, the SSR increases
from left to right. As the percentage of children coefficients deemed significant is
increased, it is more likely that they will have significant parents. Likewise, the LR
will decrease — as more children coefficients are denoted as significant, they are less
likely to have significant parents, as the number of significant parents is held constant.
Note the SSR and LR rates (y-axis) are the fraction of significant coefficients, not of

the total number of coefficients in the subband.
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FIGURE 6.14. Plot of SSR and LR for 10% significance at scale j

It is interesting to note the result that the images can consistently be ranked in
the order Test, Lenna, Urban, Mandrill, where the order denotes the relative levels
of SSR and LR. Test gave the best results, with consistently higher SSR and LR,
while Mandrill gave the lowest. This makes sense by looking at the images: Test,
being a synthetic image with sharp edges and no texture/noise, should provide the
strongest persistence across scales. Lenna is fairly regular with sharp edges, Urban
a little less so, whereas Mandrill is composed primarily of what is termed texture,
rather than edges. Texture is an important aspect to consider. As opposed to edges,
which give exponential decay across scales, the relationship between scales for texture
is dependent on the texture. How to deal with texture is something to be considered

in super-resolution if images such as Mandrill will be used as input.

6.2.4 Discussion

In order to super-resolve in the wavelet domain, we need to know the location
and magnitude of the wavelet coefficients. While it was shown that even with a

rough guess at the magnitude from previous scales used in only 1% of the coefficients,
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FIGURE 6.15. Plot of SSR and LR for 5% significance at scale j

super-resolution is feasible. However, not surprisingly, the determination of location
is the most difficult part. Use of the significance in the previous scale is not a good
prediction of significance in the next scale. In order to get decent performance, an
alternative method of location determination must be used.

While these experiments how that modest super-resolution is possible without
total knowledge of the subband coefficients, the determination of location is a critical
flaw for any real super-resolution attempt. Using the techniques above, there is
not enough information to adequately predict the location of the coefficients. An
additional complication is the sign of the coefficients. The experiments above are
based on calculating the magnitude from previous scale data. Even if the locations
could be determined, the sign is still unknown. Studies as to the ability to predict
the sign only [73]point out that the sign itself is very hard to predict.

This difficulty in super-resolution is not totally unexpected from the experience
gained in image compression using wavelets. In compression, most of the bits are
used coding the largest coefficients and few (if any) on the small coefficients, with

minimal loss in the visual quality of the imagery. In the magnitude determina-
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tion experiments, a small percentage of coefficients were added to the highest scale
sub-band, with a quantized magnitude — very similar to image compression with 3
quantized values (—f3, 0, 8). As in compression, decent results are possible with such
an approach. However, in compression, the location is also coded, which is missing in
super-resolution. The fact that only a few wavelet coefficients can maintain a decent
visual quality of the image is well known throughout the compression community.
However, this work shows that they also recreate a significant portion of the true
object frequency spectrum in the band of interest. It would be an interesting experi-
ment to look at the spectral correlation of compressed images from various algorithms
and compare the results to see how well this measure correlates with subjective visual

quality and if it is better than other measures such as SNR.

6.3 Vector Quantization

In order to capture the expected relationship between the known wavelet coef-
ficients to the unknown coefficients, a form of vector quantization, non-linear inter-
polative vector quantization (NLIVQ) will be used. VQ has been used successfully in
numerous image compression techniques|[74], and more recently for image processing
and restoration[12, 75, 76]. For the purposes of this work, NLIVQ will be used in
a pattern recognition sense - capturing patterns between wavelet coeflicients in the

degraded and true images.

6.3.1 Overview

Given random processes @), and @), with ranges of X and Y, the NLIVQ process

maps a vector in X to the respective (quantized) vector in Y,

V:X-=Y (6.1)
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such that the average distortion is minimized. Often, the approach is to optimize
the VQ for (), and then design a VQ for Q, that is conditionally optimal. When the
exact probability distributions are not known, the optimization can be approximated
using a large set of representative training data. In this application, the @, and Q,
are blurred and original wavelet coeflicient vectors. A VQ for Q, is designed based
on the expected probability distribution for wavelet coefficients. The VQ for Q, is
derived from the training data as the centroid of all vectors in @y (original data) that
have the same codebook index from @, (blurred data).

This process uses the following steps:
Encoder design

1. For each of the training images, the undecimated DWT is calculated. At each
pixel location, a vector is formed from the wavelet coefficients. The vector can
be formed many ways, such as from a single coefficient from each scale, or the

neighboring coefficients.

2. Given an encoding rate, the bits are allocated to the individual vector coeffi-

cients so as to minimize the MSE distortion.

3. Using a Laplacian distribution as an estimation of the probability distribution
of wavelet coefficients, the coefficients are scalar quantized using the number of
bits from the previous step. The encoder index is the binary concatenation of

the scalar quantized values.
Decoder design

1. For each pixel location, calculate the encoder index, 1, from the blurred
data. Add the vector derived from the original data at the same pixel
location to a variable, D (%), and track the number of such vectors for each

index i.
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2. After all the training data is exhausted, compute the average of each of

the D (7)
Image restoration

1. For each pixel location in the blurred image calculate the encoder index, i, as

above

2. Replace the current vector with D (i).

Sheppard[12] was the first to introduce NLIVQ for image restoration where the
vectors were defined from the DCT coefficients of a 3 x 3 pixel block. Improved
performance was achieved using a ‘lapped’ technique[76], where the 3 x 3 pixel blocks
where overlapped and averaged. However, this is at the cost of compression since
now it is required to store a codeword for each pixel rather than each 3 x 3 block.
In [75], the use of wavelets is proposed instead of the DCT to remove the blocking
artifacts while retaining the ability to jointly compress and restore the image.

The above algorithm calculates the wavelet coeflicients only, which ignores the
scaling coefficients. In this work, I will follow the concept in [12] and calculate the
scaling coefficient values by using a Wiener filter on the blurred image, transforming
into the wavelet domain, and then extracting only the scaling coefficient data. Since
the scaling coefficients include only low frequency information, it is assumed a Wiener
filter restores the information well enough. In practice, the difference between results

using this method and the true data is small, as was seen in [12].

6.3.2 Experimental Results

Using NLIVQ as described above, the goal is to super-resolve imagery. Thus, there
will not be an attempt to compress the imagery. In order to provide redundancy

in the representation, I will use undecimated transforms. Due to the redundancy in
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an undecimated transform, there is actually an increase in memory to represent the
image. In the results below, a set of 53 urban images, each of size 512 x 512, were
used. At least one of the images was left out of the training data and used in the
restoration attempts.

When only band-pass restoration was attempted (incoherent OTF blurring oper-
ator) using a separable DWT, an ISNR over 3 dB was noted as shown in figure 6.16
which contains only a portion of the entire image so that details are visible. While
a demonstration of NLIVQ, the results are below expected performance from other
typical algorithms. For these, the highest 3 subbands were used to form the vector.
When combined with the three directions (LH, HL, HH), this yields a vector length of
9, and 15 bits were used. Note in figure 6.16(d) which shows the spectral correlation
from which we can get an understanding of where the improvement comes. Note that
at the higher frequencies, there is less correlation. Eliminating the highest resolution
subband (§ < wg,wy < 7) in the restoration lowered the ISNR to 2.15 dB. Thus,
there is still meaningful information here but much of the improvement seems to stem
from the lower frequency content.

Next, the RS-DWT basis was used for band-pass restoration. A full packet
transform of the RS-DWT was used which yielded a uniform distribution as shown
graphically in figure 6.17 As opposed to the separable transform which has each of the
three directions (HL, LH, HH), the RS-DWT has only a single subband at each level.
Thus, a three-level full-packet transform yields 7 wavelet subbands for the RS-DWT
versus 63 for the separable DWT. This greatly simplifies matters, allowing 3-level
(rather than 2-level) transforms while maintaining a reasonable rate for the VQ. The
results are shown in figure 6.18. Note the improvement in performance from the
separable case, the ISNR nearly doubles. I believe this improvement is mainly due
to the increased rate that can be achieved per scale when using the RS-DWT which
does not have directional subbands (HL, LH, HH).

When the diffraction cut-off is placed below the folding frequency, super-resolution
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is possible. Otherwise, critically sampled data can be upsampled to allow for the
possibility of super-resolution. Often, the cut-off is set at half the folding frequency,
but I will discuss other cases below. The wavelet coefficients in any subband above
the cut-off frequency represent the super-resolved data. Note that as discussed before,
under-sampled data is not discussed in this research as it requires a different definition
of super-resolution and different algorithms.

First, separable transform were used. For this case, 4 resolution levels were used,
yielding a vector length of 12 while using a 20 bit quantizer. Since no bits are
assigned to the highest subband, the concept is the same as pass-band restoration
using separable DWT's above, adding in the estimation of the next higher resolution
subband. The results, figure 6.19, show the same ISNR in the band-pass only case,
although almost double the results from [75]. This is probably due to the extra
coefficients included in my vector below the diffraction cut-off, which is not feasible
when a uniform DWT packet basis is used. While there is frequency content in the
super-resolution band, it does not appear to be meaningful (associated with the true
object frequency data), as can be seen in figure 6.19(d).

While [75] shows some frequency content beyond the OTF cut-off, the overall im-
provement in the imagery was modest (no greater than 1.75 dB), and it is difficult to
assess whether this is meaningful extension of the frequency content. While they use
of a Wiener filter to improve the blurred image prior to the NLIVQ technique, it is dif-
ficult to assess whether the improvement stems from further band-pass improvement
or true super-resolution.

Since the predominant interest in this work is in super-resolution and band-pass
restoration complicates the determination of this, the remainder of the experiments
assume perfect band-pass knowledge. Thus, any improvement in comparison to the
original image will be due to super-resolution. ~While not necessarily feasible to
expect perfect band-pass knowledge, this functions as a reasonable limiting case.

I will also introduce a new metric, the SR-ISNR, as a measure of the super-
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resolution performance, separating out effects in the band-pass region.

SR-ISNR = SNR(truth,restored) — SN R(truth, band-pass restored)6.2a)
lf - fband—pass

= 10logio 5
r=11)

where f is the true object, f is the NLIVQ restoration, and fbmd_pass is the band-pass

2> (6.2b)

portion of the NLIVQ restoration — excluding any super-resolved frequency content.

Using the same series of 53 urban images, the object frequency will be band-
limited (ideal low-pass filter, circular symmetry) below the folding frequency. These
images will be used as the input to the restoration process — hoping to restore the
lost frequency information. Figure 6.20 shows the results for a diffraction cut-off
at % the folding frequency. This is used rather than % to allow the NLIVQ more
subbands of known data from which to extrapolate. While the results show added
frequency content, they do not show any significant signs of super-resolution. The
spectral correlation plot may show some correlations (the mean in the super-resolved
frequencies is 25% higher, 0.17 versus 0.13), but it is still quite small. Note the the
ISNR is negative — the NLIVQ actually decreased the SNR relative to truth data.
This is due to the quantization that takes place in the NLIVQ process — quantization
for those wavelet coefficients below the diffraction cut-off will reduce the SNR relative
to truth. The SR-ISNR is 0.15 dB and thus there is some super-resolution, albeit
quite small.

These results are consistent with a range of experiments conducted to estimate the
super-resolved subbands via NLIVQ. Multiple experiments were conducted to look
at vectors to use in the NLIVQ process, rather than simply the same pixel in each
wavelet subband. Using a neighborhood of pixels in the parent subband and other
techniques did not yield any significant super-resolution, with SR-ISNR’s all below
0.2 dB. The cases when the image was part of the training data, did show greater




132

improvement, up to 4-5 dB in SR-ISNR, but this is not a reasonable expectation in
practical situations.

A visual examination of the true and estimated subbands shows that the process
does somewhat replicate the form seen in the true data, as in figure 6.21. But as
seen by more detailed examination and in the 1-D plot of the respective coefficients
(figure 6.22), the NLIVQ estimate does not capture all the detail in the true data
— it appears much of the detail in the true wavelet coefficients is lost in the NLIVQ
estimate.

It is interesting to revisit the original concept of using DCT based NLIVQ for
image restoration. In general, these results based on DCTs were superior to the
wavelet based results above. The results for a DCT based NLIVQ estimation (using
the lapped approach) is shown in figure 6.23 for perfect band-pass knowledge out to
half the folding frequency. Figure 6.25 shows the complex correlation plot and 6.24
shows a log-compressed plot of the frequency content. In this case, the SR-ISNR was
0.95 dB, significantly higher than in the wavelet case.

These results point out the difficulty of taking advantage of correlations in the
wavelet domain to produce super-resolution. The DCT actually provides a better
transform, probably due to the improved decorrelation that occurs in the wavelet
transform while the DCT leaves more correlation between coeflicients. An interest-
ing approach for future work would be to investigate other multi-resolution trans-
forms, such as the Laplacian Pyramid, for NLIVQ based super-resolution perfor-
mance, specifically when the filters are designed so as to leave correlations in the

data.
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FIGURE 6.16. Results from VQ-based pass-band only restoration using separable
DWT. (a) is original image, (b) is blurred image, SNR=21.50 dB, (c) is restored
image, ISNR=3.28 dB, (d) is spectral correlation image.
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QJ

(a) (b)

FIGURE 6.17. Graphical representation of 3 level transform for (a) separable DWT
and (b) RS-DWT.
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FIGURE 6.18. Results from VQ-based pass-band only restoration using RS-DWT.
(a) is original image, (b) is blurred image, SNR=21.62 dB, (c) is restored image,
ISNR=6.75 dB, (d) is spectral correlation image.
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(a) (b)

(c) (d)

FIGURE 6.19. Results for super-resolution using separable DWT. (a) is original, (b)

is blurred, SNR=17.11 dB, (c) is restored, ISNR=3.28 dB, (d) is spectral correlation
plot.
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(c)

FIGURE 6.20. Results for super-resolution using RS-DWT uniform packet basis. (a)
is original image, (b) is band-limited image SNR=29.67, (c) is restoration ISNR=
-0.81 dB, and (d) is spectral correlation of restoration with original. The SR-ISNR
is 0.15 dB.
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FIGURE 6.21. Images of wavelet subbands for the NLIVQ estimation (left) and truth
data (right) of the same subband which is beyond the band-limit (super-resolution).

AAA/\M/\NH/

J\MW\ f/\ W

FIGURE 6.22. 1-D plot of the wavelet coefficients. Top is the NLIVQ based estima-
tion, bottom is the truth data.
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FIGURE 6.23. Results for DCT based NLIV(Q) estimation. (a) is the original, (b) is
band-pass image SNR=23.76, and (c) is the NLIVQ restoration, SNR=24.41. The
SR-ISNR is 0.95 dB.
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FIGURE 6.24. Log-compressed image of frequency content of true image (left) and
NLIVQ estimate (right). Black circles show the band-pass cut-off.

FIGURE 6.25. Complex correlation plot of NLIVQ estimation.
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CHAPTER 7
CONCLUDING REMARKS

The goal of this research was to analyze image restoration and super-resolution
from a multi-resolution perspective. In chapter 5, a new transform was introduced
which was designed to solve the problem facing other wavelet domain image restor-
ation techniques: how to account for the non-separable and circular nature of common
imaging systems. The transform was motivated and presented as a way to maintain
radial symmetry in the frequency domain while still taking advantage of the superior
denoising performance of wavelets. When applied to blurred and noisy imagery, the
results were better than Wiener Filtering (which inherently adapts to whatever sym-
metry occurs in frequency space) in terms of ISNR. Irom a subjective perspective,
the RS-DWT restorations also tended to remove noise better in smooth areas of the
imagery while maintaining the ability to model sharp transitions. One of the primary
reasons for this is the spatial locality of wavelets versus the global nature of Fourier
components. When Wiener filtering of the wavelet coefficients was also used, the
results, in terms of ISNR, were close to the optimal LSI solution, the Wiener filter
given perfect knowledge of the noise and signal PSD’s.  Again, while a subjective
call, visual comparison and 1-D plots demonstrate that the results from the RS-DWT
(with no a priori knowledge other than blurring function) were superior.

It is expected that these results could be further improved by use of more detailed
denoising approaches which take into account more of the relationship between coef-
ficients such a neighborhood weighting or Hidden Markov Models. The soft thresh-
olding and Wiener filter denoising approaches are among the simplest that have been
developed. Based on results in the literature that demonstrate superior performance

from more complicated modeling of the denoising process, additional improvement
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should be possible.

Super-resolution, defined as the meaningful restoration of the object spectrum
beyond the optical system cut-off, was also investigated from a multi-resolution per-
spective. Super-resolution from a multi-resolution perspective is the estimation of
a new subband containing the higher frequency object information. Simple experi-
ments were conducted to show that only a very few coefficients can yield significant
super-resolution, even without perfect knowledge of the magnitude. However, de-
termination of location is the problem for this approach. Although in general, large
wavelet coefficients persist through the scales, this is not consistent enough to locate
their positions, especially in the case of textured imagery. To compensate for the
issues associated with a direct measurement of the coeflicient location, an indirect
method of using the relationship of coeflicients across scales to predict the unknown
subband via NLIVQ was used. The results showed decent improvement in passband
restoration, although still below what is possible by other algorithms such as the
RS-DWT technique developed in chapter 5. In order to determine the feasibility
of super-resolution and separate out the band-pass improvements, perfect band-pass
knowledge was assumed. The ability to super-resolve beyond the known frequencies
was not significant. At best, only modest improvements of the image were pro-
duced. While not a comprehensive study, these results point out the difficulty in
super-resolving in the wavelet domain and mirrors some of the issues that have arisen

in the field of image compression.
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